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Abstract
The construction of large-scale quantum computers will require modular architectures that allow
physical resources to be localized in easy-to-manage packages. In this work, we examine the
impact of different graph structures on the preparation of entangled states. We first explain the
hierarchical product framework in which modular graphs can be easily constructed. We argue that
the hierarchies constructed thus have favorable properties for quantum information processing,
such as a small diameter and small total edge weight. We present numerical and analytical results
on the speed at which large entangled states can be created on nearest-neighbor grids and
hierarchy graphs, and show that suitably designed hierarchies can perform favorably in comparison
to grid architectures.

Background
A graph G = (V ,E ) is given by a set of vertices V , and a set of edges between
the vertices E , where an edge between distinct vertices i and j is denoted eij . We
consider weighted graphs, where we assign a weight wij ∈ R to each pair of
vertices (i , j) ∈ V × V . Two vertices i and j are said to be disconnected if
wij = 0, and connected by an edge with weight wij 6= 0 otherwise. Self-edges are
disallowed.
Alternatively, we may describe graphs via the adjacency matrix, whose rows and
columns are labeled by the vertices in V , and whose entries hold edge weights. A
closely related matrix is the algebraic Laplacian L, which is especially useful in the
study of connectivity properties and graph dynamics. The adjacency matrix A and
algebraic Laplacian LG for a graph G are given by

Aij =

{
0, if i = j ,

wij, if i 6= j ,
, Lij =

{
vi , if i = j ,

−wij, if i 6= j ,

Hierarchical Product
Given graphs G and H , the hierarchical product GΠH is a graph with one copy of
graph G , with a copy of H attached to each node of G (see figure below). We
call the copy of G as the upper level, and the copies of H the lower level of the
hierarchy GΠH .
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Generalizations to the above formalism allow greater flexibility. First, we could let
the levels of the hierarchy be weighted (figure below, left). This captures the
notion that links scale with the level of the hierarchy in some parameter, which
could be, e.g., wire length, or communication bandwidth. In classical
architectures, the notion of fat trees is closely related.
We may also allow truncation, i.e., where we attach copies to only some of the
nodes of the upper level (figure below, right). This way, one could equip modules
with communicator qubits that serve to connect modules across levels, but do not
themselves support further sub-hierarchies.
Both generalizations can be made via minor modifications to the equation relating
the hierarchy Laplacian to its constituent graph Laplacians (see figure above).

Graph Connectivity Comparisons
As an easy comparison, we tabulate the diameter, weighted diameter, and the
max. degree of various topologies commonly seen in quantum architectures.

Graph δw ∆ w
Complete graph KN const. N N2

? Star SN const. N N
Cycle CN N const. N
Square grid N1/d const. N
? Weighted hierarchy K Γαi

n N logn α const. N
? Unweighted hierarchy K Γi

n lognN const. N
Table: The scaling with N of three key graph parameters: weighted diameter δw , maximum degree
∆, and edge weight w . A star has been placed next to the two graphs we find to be Pareto
efficient.

Secondly, the Laplacian spectra of graphs provide key information on connectivity.
In particular, the second-smallest eigenvalue λ2 (also known as the algebraic
connectivity) bounds other connectivity measures such as diameter, mean
distance between nodes, and Cheeger constant, and may therefore be a good
measure of connectivity. Larger λ2 implies “more connected”.
The spectra of hierarchy Laplacians can be computed efficiently, due to the
algebraic relation

spec (KΠL) =

|K |⊔
j=1

spec (ακjD + L) .

for every eigenvalue κj of K .

Entangled State Construction
As a simple benchmark of graph architectures, we calculate the time required to
create a GHZ state involving all qubits (one per node) in the graph.
To investigate construction of GHZ states in a heralded entanglement setting, we
assume time is discrete and that on each time step, the probability of successful
entanglement generation between nodes i and j is wij . We consider both a 2D
nearest-neighbor (NN) grid with wij = p0 for neighboring qubits, as well as a
hierarchical graph where the probability at the ith level of the hierarchy is given
by p0α

i−1. For a constant p0, it is the case that in expectation, the time to
construct the GHZ state, tGHZ, is on the order of the weighted diameter,

E [tGHZ] ∼ O (dw(G ))

The figure below shows simulation of tGHZ for the hierarchy KΠαi
3 at various α, as

well as for a 2D NN grid. In each case, p0 = 0.1. The
√
N fit shows the scaling

of tGHZ for the NN case. With a simple recursive argument, one can show that
when α ≥ n−1/2 (where ni = N for an i -level hierarchy), the hierarchy beats the
NN grid. This is reflected in the figure below.
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Simulations

The hierarchical product formalism introduced here is an experimentally
well-motivated and flexible framework that allows easy calculation of relevant
graph connectivity properties, spectral properties, and the performance of
dynamical processes such as the unitary generated of a large, entangled quantum
state on a modular architecture.
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