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The construction of large-scale quantum computers will require modular architectures that allow
physical resources to be localized in easy-to-manage packages. In this work, we examine the impact
of different graph structures on the preparation of entangled states. We begin by explaining a
formal framework, the hierarchical product, in which modular graphs can be easily constructed.
This framework naturally leads us to suggest a class of graphs, which we dub hierarchies. We
argue that such graphs have favorable properties for quantum information processing, such as a
small diameter and small total edge weight, and use the concept of Pareto efficiency to identify
promising quantum graph architectures. We present numerical and analytical results on the speed
at which large entangled states can be created on nearest-neighbor grids and hierarchy graphs. We
also present a scheme for performing circuit placement – the translation from circuit diagrams to
machine qubits – on quantum systems whose connectivity is described by hierarchies.

I. INTRODUCTION

As quantum computers grow from the small, few-qubit
machines currently deployed to the large machines re-
quired to realize useful, fault-tolerant computations, it
will become increasingly difficult for every physical qubit
to be part of a single contiguous piece of hardware. Just
as modern classical computers do not rely on a single unit
of processing and memory, instead using various compo-
nents such as CPUs, GPUs, and RAM, we expect that a
quantum computer will likewise use specialized modules
to perform different functions. At a higher level, comput-
ers can be organized into clusters, data centers, and cloud
services which allow for a distributed approach to com-
putational tasks, another paradigm quantum computers
will no doubt emulate. Already, there has been signifi-
cant interest in how quantum algorithms for elementary
operations such as arithmetic perform in distributed-
memory situations [1, 2] and how to automate the design
of quantum computer architectures [3]. In addition, the
construction of a fault-tolerant quantum computer natu-
rally suggests a separation of physical qubits into groups
corresponding to logical qubits, which makes modularity
an attractive framework for building fault-tolerant com-
puters [4]. Modular and scalable computing architectures
have been explored for both ion trap [5, 6] and supercon-
ducting platforms [7–9].

In this paper, we use tools from graph theory to dis-
cuss benefits and drawbacks of different potential archi-
tectures for a modular quantum computer. A graph-
theoretic approach allows us to flexibly examine a wide
range of possible arrangements quantitatively and allows
for convenient numerical simulation using existing soft-
ware packages designed for network analysis [10]. We es-
pecially wish to focus on families of graphs that can scale
with the desired number of qubits. In general, we assume
that connectivity, i.e., being able to quickly perform op-

erations between nodes, is desirable in an architecture,
but that building additional graph edges is in some way
costly or difficult, and so will try to minimize the num-
ber of needed edges to achieve a highly communicative
graph.

We will make use of a previously described graph-
theoretic binary operation known as the hierarchical
product [11, 12]. We will use this iteratively to describe
a new family of graphs we dub “hierarchies.” We will
show that hierarchies perform well by many common-
sense graph metrics and argue that they would serve as a
plausible and effecient basis for a quantum computing ar-
chitecture. Furthermore, we will demonstrate that these
graphs allow for easily-implemented heuristic procedures
to assist in the compilation of quantum algorithms.

We will examine the performance of graphs in gen-
erating large entangled states such as the multi-qubit
Greenberger-Horne-Zeilinger (GHZ) state (also known as
a cat state). The GHZ state has perfect quantum corre-
lations between different qubits; it thus can be used to
perform high-precision metrology [13, 14]. In addition,
the creation of a GHZ state can be used as part of a
state-transfer protocol, which may be useful as part of
large quantum computations [15].

An additional property of GHZ state preparation and
state transfer which makes them a useful starting point is
that, in nearest-neighbor connected systems, performing
these tasks using unitary processes from an initial prod-
uct state is limited by the Lieb-Robinson bound [16, 17].
It takes a time proportional to the distance between two
points to establish maximal quantum correlation between
them. By examining these tasks on a range of different
graphs, we hope to understand how the graph structure
can affect the limitations on quantum processes caused by
locality considerations. Prior work has characterized the
difficulty of creating graph states [18], but preparation
of such states is not limited by Lieb-Robinson consider-
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ations.

Our work in this paper should be contrasted with work
on entanglement percolation [19, 20]. Entanglement per-
colation describes the process of using low-quality en-
tanglement between adjacent nodes on a graph to create
one unit of long-range, high-quality entanglement (e.g.,
a Bell pair). The use of entanglement percolation to pre-
pare large cluster states on a lattice was considered in
Ref. [21]. The nature of entanglement growth in com-
plex networks was considered in Refs. [22, 23], showing
that so-called “scale-free” networks are particularly easy
to produce large entangled states in. We are interested
in the overall capability of different graph structures to
perform large computations and in the use of graph eigen-
value methods to understand the spread of quantum in-
formation [24]. GHZ state preparation and state transfer
are just two possible benchmark tasks, and it is possible
that other tasks would result in different evaluations of
relative performance between graphs.

Our work should also be considered in the context of
classical network theory, where much is known about
complicated graph structures [25–27]. It remains to be
seen to what degree classical network theory can be eas-
ily exported to the quantum domain. Quantum effects
such as the no-cloning theorem may limit our ability to
distribute information, or conversely we can take advan-
tage of teleportation to distribute quantum bandwidth
in anticipation of it actually being needed. As further
examples of how quantum and classical networks differ,
it has been shown that entanglement swapping may be
used to permit quantum networks to reshape themselves
into interesting and useful topologies [28]. It has also
been shown that, in general, the optimal strategy for en-
tanglement generation in quantum networks can be diffi-
cult to calculate because many aspects of classical control
theory do not apply [29].

The structure of this paper is as follows. In Sec. II, we
will introduce a binary operation on graphs known as the
hierarchical product, describe how it can be used to pro-
duce families of graphs we call hierarchies, and discuss
the properties of these hierarchies. In Sec. III, we will
compare hierarchies to other families of graphs, examin-
ing how certain graph-theoretic quantities scale with the
total number of included qubits. Readers who are not
interested in graph theoretic details may wish to skip
much of these first two sections. In Sec. IV, we will use
analytic and numerical methods to examine how long is
required to construct GHZ states spanning our graphs
or to transfer states across them, using Lieb-Robinson
bounds to connect graph-theoretic quantities to bounds
on quantum computing performance. Finally, in Sec. V,
we will show how the unique structure of hierarchies al-
lows for simple heuristics to map qubits in an algorithm
into physical locations in hardware.

II. HIERARCHICAL PRODUCTS OF GRAPHS

A. Background and Notation

One of the defining features of modularity in a net-
work is the presence of clusters of nodes that are well-
connected. Qualitatively, a modular network can be par-
titioned into such node clusters, or modules, that have
a sparse interconnectivity. In quantum networking, it
is believed that fully connected architectures will suf-
fer greatly decreasing performance or increasing costs as
the number of nodes becomes larger, and this motivates
the search for alternative network designs. For instance,
Ref. [30] estimates that a single module of trapped-ion
qubits will likely contain no more than 10 to 100 ions,
noting that the speed at which gates are possible becomes
slower as the module is expanded. On the network scale,
we might imagine a network of nodes over longer dis-
tances connected by quantum repeaters [31]. In such a
network, establishing direct links between every possible
pair of N nodes would require Θ(N2) sets of quantum
repeaters, a prohibitive cost as N becomes large.

The state of the art in quantum technologies, such as
ion traps and superconducting qubits, is the ability to
control a small number (≈ 10 − 100) of physical qubits
using certain fixed sets of one- and two-qubit operations.
Instead of increasing the size of these modules, one could
instead build a network out of many small modules that
are connected at a higher level in a sparse way, perhaps
by optical communication links [30].

Our first goal will be to describe modular architectures
in the language of graph theory. This will then allow
us to quantify and compare their connectivity proper-
ties against other network designs, notably the nearest-
neighbor grid architecture.

Our detour into graph theory in this paper serves two
purposes. First, it will allow to develop a rigorous way to
construct families of graphs which we believe are promis-
ing quantum computing architectures. Second, we will
later (beginning in Sec. IV) use these graph properties
to connect directly to physical bounds on the generation
of states with long-range quantum correlations; phras-
ing the properties of quantum architectures as graphs al-
lows us to make a direct application of the Lieb-Robinson
bound to these cases.

An unweighted graph G = (V,E) is conventionally
specified by a set of vertices V , and a set of edges be-
tween the vertices E, where an edge between distinct
vertices i and j will be denoted by the pair (i, j). In
this paper, we use the terms “vertex” and “node” syn-
onymously. The order of a graph is the total number of
vertices in the graph, |V |. It will be useful for the pur-
poses of this paper to work with weighted graphs, where
we specify a weight wij ∈ R for each pair of vertices
(i, j) ∈ V × V . Two vertices i and j are said to be dis-
connected if wij = 0, and connected by an edge with
weight wij 6= 0 otherwise. Thus, unweighted graphs may
be thought of as graphs with unit weight on every edge.
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Finally, the graphs we consider here will be simple,
meaning:

• The edges have no notion of direction. In other
words, wij = wji for all i, j ∈ V .

• There are no self-edges, i.e., wii = 0 for all i ∈ V .

• Any two vertices have at most one edge between
them.

Henceforth, graphs will be simple and weighted, unless
otherwise specified.

The information contained in a graph can be repre-
sented as a matrix known as the adjacency matrix, whose
rows and columns are labeled by the vertices in V and
whose entries hold edge weights. Thus, the adjacency
matrix is an n×n matrix where |V | = n. The adjacency
matrix AG (or simply A for shorthand) for a graph G is
given by

Aij =

{
0, if i = j,

wij , if i 6= j.
(1)

An important measure of local connectivity is given by

the valency vi of a node i, with vi =
n∑
j=1

wij . For un-

weighted graphs, the valency of any node is simply the
number of edges incident at that node, otherwise known
as the degree of the node. We will also define the graph
diameter, δ(G), as the maximization of the shortest dis-
tance between two nodes on the graph over all pairs of
nodes.

Graphs may also be described by the Laplacian. The
algebraic Laplacian L is given by

Lij =

{
vi, if i = j,

−wij , if i 6= j.
(2)

The algebraic Laplacian is closely related to the adja-
cency matrix, since we may write L = ∆ − A, where
∆ = diag (v1, . . . , vn) is the diagonal matrix of vertex va-
lencies. The eigenvalues of the algebraic Laplacian give
us bounds on various graph properties, as discussed fur-
ther in Sec. II B 4.

Finally, we remark that the algebraic Laplacian should
not be confused with the normalized Laplacian L =
∆−

1
2L∆−

1
2 , which is frequently seen in the network the-

ory literature. The algebraic properties discussed in the
next section (such as associativity of the hierarchical
product) apply to the adjacency matrix as well as the
algebraic Laplacian, but not to the normalized Lapla-
cian.

B. Hierarchical Product

Here, we will define the hierarchical product and illus-
trate it with simple examples. For a fuller exposition, see

FIG. 1. A simple example of the hierarchical product GΠH
between the cycle graphs G = C4 and H = C3. The first term
in Eq. (4), AG ⊗DH , creates one copy of G on the vertex set
formed by the first vertices of each H copy, while the second
term 1G ⊗AH creates the four copies of H.

Ref. [11], where the hierarchical product of graphs was
introduced. Note that, in some contexts, the hierarchical
product is also known as the rooted product [12].

Given a graph G, let 1G denote the identity matrix on
n = |V | vertices. We will denote by DG an n×n diagonal
matrix with 1 as the first entry and zero everywhere else.
Note that there is no natural notion of order to graph
vertices, so the choice of “first” vertex must be specified
explicitly. Graphs with such a specified first vertex are
called rooted graphs [32]. We write these matrices as

1 =


1

1
1

. . .

1

 , D =


1

0
0

. . .

0

 . (3)

Definition II.1. Given graphsG andH, the hierarchical
product P = GΠH is the graph on vertices VP = VG×VH
and edges EP ⊆ VP × VP specified by the adjacency
matrix

AP = AG ⊗DH + 1G ⊗AH , (4)

or, equivalently, by the algebraic Laplacian

LP = LG ⊗DH + 1G ⊗ LH . (5)

We will often use the shorthand AP = AG Π AH and
LP = LG Π LH .

If G and H are graphs, then G Π H may be thought
of as one copy of G with |G| copies of H, each attached
to a different vertex of G (see Fig. 1). Thus, G Π H
is a graph which has |G| modules of |H| nodes each.
The modules’ internal connectivity is described by H,
and the modules are connected to one another in a man-
ner described by G. The hierarchical product formalism
therefore naturally produces modular graphs. Its main
advantage comes from the convenience of working with
the algebra at the level of adjacency matrices and Lapla-
cians, which in turn makes the computation of important
properties of such graphs straightforward.
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We now present some properties of the hierarchical
product which make it an attractive formalism for prac-
tical applications in quantum networking.

1. Structural Properties

At the level of adjacency matrices, the hierarchical
product is associative. Let A,B,C be three adjacency
matrices. Then,

(AΠB) Π C = AΠ (B Π C) . (6)

For a proof, we refer the reader to Ref. [11].
Associativity implies that a product of multiple graphs

does not depend on the order of evaluation. Therefore,
we can unambiguously take the hierarchical product over
many graphs to produce a graph of the form GkΠGk−1 Π
· · · Π G1. We will refer to such graphs as hierarchies,
and the i-th graph in the product Gi as the i-th level of
the hierarchy, enumerated from the bottom level upwards
(symbolically, from right to left). In particular, if all Gi
are equal to some graph G, then we write

GΠk := GΠ · · ·GΠ︸ ︷︷ ︸
k−1 times

G. (7)

and refer to GΠk as a depth-k (or k-level) hierarchy.
Note that the hierarchical product does not satisfy

many properties which are commonly assumed for op-
erations on matrices. In particular,

1. Bilinearity: (A1 +A2)ΠB = A1⊗DB+A2⊗DB+
1(A1+A2) ⊗ B 6= A1 Π B + A2 Π B. Similarly, A Π
(B1 +B2) 6= AΠB1 +AΠB2.

2. Scalar multiplication: For any scalar α, (αA)ΠB =
αA⊗DB +1A⊗B 6= α (AΠB) 6= AΠ (αB). Note
however that scalar multiplication is distributive in
the following way: α (AΠB) = (αA) Π (αB).

Hierarchical graphs are also instances of hyperbolic
graphs. The Gromov-hyperbolicity [33], which measures
curvature and is small for a graph with large negative cur-
vature, is only a constant for hierarchical graphs. Since
the hyperbolicity in general is at most half the graph
diameter, whereas in this case it is independent of the
diameter, it is termed constantly hyperbolic in the par-
lance of Ref. [34]. Hyperbolic graphs are seen in several
real-world complex networks [35, 36], most notably the
internet [37, 38]. Hyperbolic lattices have also been real-
ized recently in superconducting circuits [39].

Finally, hierarchies have low tree-, clique- and rank-
widths, which are each measures of the decomposibility
of a graph [40]. These structural properties imply ef-
ficient algorithms for optimization problems expressible
in monadic second-order (MSO) logic – a class which,
for arbitrary graphs, includes several NP-hard problems.
This feature could potentially be used to solve circuit lay-
out and optimization problems on modular architectures
without resorting to heuristics. We refer the reader to
Ref. [41] for details on these structural results.

2. Scalability

So far we have discussed hierarchies in which the edges
in different levels of the hierarchy are equally weighted.
However, one useful generalization would be to allow the
weight of edges at each layer of the hierarchy to vary.
The meaning of this weight could vary depending on the
context. In some cases, weights can be used to quantify
the costs of an edge (cost weight). In others, we may
wish to use weighted edges to quantify the power or per-
formance of a network, interpreting edge weights as the
strength of terms in a Hamiltonian or, inversely, the time
required to communicate between nodes (time weight).

In this work, we prefer to remain agnostic to the mean-
ing of the weights as much as is possible. When we cal-
culate graph properties in Sec. III, we will do so without
reference to the meaning of the weights. In general, we
will allow a graph to assign multiple kinds of weights to
its edges, and each type of weight might scale differently.
For now, we define a generalization of the hierarchical
product which will allow us to construct hierarchies that
incorporate different weights at different levels of the hi-
erarchy.

Definition II.2. Given graphs G and H, and α ∈ R+,
the α-weighted hierarchical product P = G Πα H is a
graph on vertices VP = VG×VH and edges EP ⊆ VP×VP
specified by the adjacency matrix

AP = αAG ⊗DH + 1G ⊗AH , (8)

or, equivalently, by the algebraic Laplacian

LP = αLG ⊗DH + 1G ⊗ LH . (9)

We will often use the shorthand AP = AG Πα AH , and
LP = LG Πα LH .

As before, we may construct a k-level, weighted hier-
archy out of k base graphs G1, . . . , Gk, and k weights
αi, . . . , αk ≡ ~α, so that the edges of the i-th level graph
Gi are weighted by the i-th component of ~α, αi. The
adjacency matrix of such a hierarchy may be written as

AΠ~αk :=

k∑
i=1

αi1[i+1. .k] ⊗Ai ⊗D[1. .i−1], (10)

where the subscripts [a . . b] on 1 and D are shorthand
for the Kronecker product of matrices over all descend-
ing indices in the integer interval [a . . b]. For instance,
D[1. .i−1] := DGi−1 ⊗DGi−2 ⊗ · · · ⊗DG1 .

Defined as above, a weighted hierarchy GΠ~αk is
uniquely and efficiently specified by a real vector of
weights ~α ∈ R+

k and an ordered tuple of graphs
(G1, . . . , Gk). It will be the case that our analyses are
unaffected by an overall scaling of the weight vector, so
that one may identify ~α ≡ c~α for any real scalar c. As
convention, we will always normalize by setting α1 = 1,
which corresponds to assigning a unit-weight multiplica-
tive factor to the lowest-level graphs in the hierarchy.
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We can construct the adjacency matrix of the graph
GΠ~αk by repeated application of the two-fold product
(Def. II.2) in some well-defined way, analogous to Eq. (7).
However, unlike before, the weighted product is non-
associative, so we must first define an order of operations
for manifold weighted products. Unless otherwise spec-
ified, we will always evaluate a manifold product from
right to left, which corresponds to building the hierar-
chies from the bottom up, and is required in order to
ensure that this definition matches Eq. (10). For exam-
ple, in the 3-fold product A3 Πα3 A2 Πα2 (α1A1), we will
first evaluate the product A2 Πα2 (α1A1), and then take
the product of A3, weighted by α3, with the resulting
graph. The final result is

α3A3⊗D2⊗D1 +α213⊗A2⊗D1 +α113⊗12⊗A1. (11)

In fact, a k-fold product, when evaluated this way,
matches the right hand side of Eq. (10). Therefore, the
k-level weighted hierarchy can also be written unambigu-
ously as

AΠ~αk = Ak Παk Ak−1 Παk−1
· · ·Πα2 (α1A1). (12)

Henceforth, the weight α1, which scales the lowest-level
adjacency matrix A1, will be dropped due to our normal-
ization choice of α1 = 1.

An important class of hierarchy graphs is one where the
level weights follow a geometric progression of weights,
i.e., αi = αi−1. We will denote such hierarchies by GΠαk,
where the scalar subscript α will be understood to mean
the mutual weighting between successive hierarchies. For
α > 1, this leads to a “fat tree” structure, while for α < 1,
we instead get a “skinny tree” for which the edge weights
decrease between consecutive levels from the leaves to the
root. These constructions are illustrated in Fig. 2, and
mentioned because fat trees are known to be a commonly
used architecture in classical networks [42].

FIG. 2. An illustration of the use of the hierarchical product
to produce (a) “skinny” and (b) “fat” trees. In each case, the
hierarchy KΠα3

3 is drawn, with the thickness of edges illustrat-
ing the weight of those edges. Depending on whether α < 1
or α > 1, this can lead to either lower-weighted high-level
edges as in (a) or higher-weighted ones as in (b). Note that,
for ease of visualization, here we break the usual convention
of taking the lowest-level edges as unit weight.

Allowing a clear separation of the modular system into
hierarchical levels, each of which can be assigned unique

edge weight, enables straightforward discussion of com-
putation that occurs both within and between modules
in a unified framework. When two nodes interact, we
can assign this a cost that depends on the edges between
them.

0

1 2
0

1 2
0

1 2
(122)

FIG. 3. Addressing nodes in the hierarchy, layer by layer.
Shown is a three-level hierarchy with the triangle graph K3

as its base. Each vertex is represented as a 3-digit number
in base 3. The first digit points to a node at the top level
(red solid triangle), the second to a location in the second
level (blue dashed triangle), and finally, the last digit (yellow
dotted triangle) specifies the node location completely.

3. Node Addressal

A hierarchy on N nodes gives a natural labeling of
the nodes. Suppose the hierarchy H contains k levels
and each level is described by a graph G with |G| =
n nodes, where nk = N . Label the vertices of G by
indices j = 0, 1, . . . , n − 1. Then, the adjacency matrix
1G ⊗ G (which corresponds to n disjoint copies of G)
has vertices which may be labeled as (jk), where j, k =
0, 1, . . . n − 1. The first label identifies which copy of G
the node occurs in, while the second identifies where in
G it appears. The same vertex labeling can then be used
for the 2-level hierarchy G Π G. In this manner, the k-
level hierarchy has nk vertices with labels of the form
(b1b2 · · · bk), where bi ∈ {0, 1, . . . , n− 1} for all i. This
is essentially a k-digit, base-n representation of numbers
from 0 to N = nk − 1, as illustrated in Fig. 3.

This node addressal scheme allows for each node to
be uniquely identified in a way that simultaneously de-
scribes its connectivity to other nodes and allows for easy
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counting of how many nodes lie in either the entire graph
or in particular subgraphs. This addressal scheme will
be important for describing a variant of hierarchies in
Sec. II B 5 and for implementing the graphs in software,
e.g. as used to generate the numerical results in Sec. IV C.

4. Spectral Properties

One of the tools frequently used in analyzing large net-
works is the spectral decomposition of the Laplacian.
The behavior of the largest eigenvalue, the first eigen-
value gap, and the distribution of eigenvalues as a func-
tion of the network parameters are some of the diag-
nostics that can provide key information about dynam-
ical processes on the network, and can also be used as
points of comparison between competing network topolo-
gies [43].

The smallest eigenvalue of a Laplacian is always λ1 =
0, which corresponds to the uniform eigenvector ~e1 =
(1, 1, . . . , 1). In ascending order, the eigenvalues of L
may be denoted by 0 = λ1 ≤ λ2 ≤ · · · ≤ λN . We now
state some graph properties that can be related to the
spectrum of L [43, 44].

The second eigenvalue λ2 is known as the algebraic con-
nectivity of the graph and is closely related to the expan-
sion and connectivity properties of the graph. Broadly,
the larger the value of λ2, the better the connectivity of
the network. To illustrate this point, consider the graph
diameter, δ(H), which can be bounded using λ2 as fol-
lows:

4

Nλ2
≤ δ (H) ≤ 2

⌈∆ + λ2

4λ2
ln (N − 1)

⌉
, (13)

where ∆ is the maximum degree of H. It can be seen
that a larger value for λ2 will lead to a smaller graph
diameter. We also have the following asymptotic bound
on the mean distance between nodes, ρ̄(H):

2

(N − 1)λ2(H)
+

1

2
<∼ ρ̄(H) <∼

⌈∆ + λ2

4λ2
ln (N − 1)

⌉
.

(14)
Another important diagnostic of a network is given by the
Cheeger constant h(H) [45], also called the isoperimetric
number or the graph conductance. This graph invariant
is a measure of how difficult the graph is to disconnect
by cutting edges. For a connected graph, this number
is always positive. As benchmark values, the complete
graph KN has Cheeger constant N/2 while a cycle graph
CN has Cheeger constant 4/N . The relationship between
λ2 and h(H) can be seen through the following bounds:

λ2

2
≤ h(H) ≤

√
λ2 (2∆− λ2). (15)

Many other graph properties may be derived from the
Laplacian spectrum as well (see, e.g., Refs. [43, 44]).

For a large network, finding the eigenvalues can be nu-
merically expensive. However, hierarchies have a special

structure which can be exploited for the evaluation of
graph spectra. Here, we show (in Theorem II.1) that if
the spectra of the base graphs Li are known, then one can
derive the spectrum of the k-level hierarchy efficiently us-
ing a recursive procedure. We first present two lemmas.
The first lemma generalizes Theorem 3.10 from Ref. [11],
which states that the characteristic polynomial φP (x)
(= det [x1− P ]) of an unweighted hierarchical product
of adjacency matrices A, B is given by

φP (x) = φB′ (x)
nA φA

(
φB (x)

φB′ (x)

)
, (16)

where A′ (resp. B′) is the matrix A (resp. B) with the
first row and first column removed, and nA = |GA| is
the order of the graph A. In fact, Eq. (16) applies to
Laplacians as well as adjacency matrices. The lemma
below further generalizes this statement to a weighted
product of Laplacians.

Lemma II.1. LetK and L be two graph Laplacians with
characteristic polynomials given by φK(x) and φL(x), re-
spectively. Then, the characteristic polynomial φΠ(x) of
the hierarchical product K Πα L is given by

φΠ (x) = [αφL′ (x)]
nK φK

(
1

α

φL (x)

φL′ (x)

)
, (17)

where nk = dim {K}, and L′ is defined similar to A′ and
B′ above.

Proof. Denote the spectra of K and L by {κj} and {λj},
respectively. Recall that the α-weighted hierarchical
product may be written as

K Πα L = αK ⊗DL + 1K ⊗ L. (18)

If UK is a unitary that diagonalizes K, we conjugate the
above equation with the unitary UK ⊗ 1L, and look at
the resulting block matrix. Each block corresponds to
an eigenvalue of K, and thus the j-th block is given by
ακjDL+L. The full spectrum may then be expressed as
a disjoint union of the block spectra,

spec (K Πα L) =

|K|⊔
j=1

spec (ακjDL + L) . (19)

Now, we apply Eq. (16) to K Πα L ≡ (αK) Π L
and use the fact that φαK(x) = det [x1− αK] =
αnK det

[
x
α1−K

]
≡ αnKφK

(
x
α

)
. This yields Eq. (17),

as desired.

Now we show that if the eigenvalues of K and the poly-
nomials φL and φL′ are known, then there is a straight-
forward procedure to compute the eigenvalues of KΠαL.

Lemma II.2. Let K and L be graph Laplacians, as be-
fore. Each eigenvalue of the product characteristic poly-
nomial φΠ can be found as a solution of the equation

ακi =
φL (x)

φL′ (x)
(20)

for some K-eigenvalue κi.
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Proof. Any eigenvalue of the product graph must be a
zero of the left-hand side of Eq. (17) and, by equal-
ity, a zero of the right-hand side. Now, the degree
of polynomial φK is nK , which implies that the term
of degree nK must be nonzero. Thus, in the product

φL′ (x)
nK φK

(
1
α
φL(x)
φL′ (x)

)
, there must be a term which is

indivisible by the polynomial φL′ (x). Therefore, the zero
of the right-hand side cannot be a root of the polynomial
φL′ .

We are seeking values of x such that the polynomial

φK

(
1
α
φL(x)
φL′ (x)

)
evaluates to zero. In other words, we are

looking for x such that the term 1
α
φL(x)
φL′ (x) is a root of φK .

Therefore, we solve Eq. (20) for x, for all roots κi of
K.

If the forms of φL and φL′ are known (and if each
have sufficiently low degree), then computing the roots
of φΠ becomes tractable, even if K is a large matrix.
This suggests a recursive procedure for computing the
spectrum of a k-level hierarchy, by writing it as a product
of the (k − 1)-level hierarchy with the k-th base graph.
We now frame this as our main result of this section:

Theorem II.1. Suppose we have a k-level hierarchy
LΠ~αk described by base graph Laplacians L1, L2, . . . , Lk
and weights ~α = (1, α2, . . . , αk) as follows,

LΠ~αk = Lk Παk Lk−1 Παk−1
· · ·Πα3

L2 Πα2
L1. (21)

Define a new set of weights ~β = (1, β2, . . . , βk) with βi =
αi/αi−1, and a new set of Laplacians Mk,Mk−1, . . . ,M1

recursively as

Mk = Lk,

Mi = Mi+1 Πβi+1 Li.

Then, the following hold:

1. M1 = LΠ~αk.

2. Any eigenvalue of Mi (for i < k) may be found as
a solution to the equation

βi+1µ
(i+1) =

φLi(x)

φL′i(x)
(22)

for some µ(i+1) ∈ spec {Mi+1}.

Proof. First, we prove statement 1. It can be seen that

Mk−1 = Mk Πβk Lk−1 = Lk Πβk Lk−1

=
1

αk−1
(αkLk ⊗Dk−1 + αk−11k ⊗ Lk−1) ,

(23)

Mk−2 = Mk−1 Πβk−1
Lk−2

=
1

αk−2
(αkLk ⊗Dk−1 ⊗Dk−2 +

αk−11k ⊗ Lk−1 ⊗Dk−2 + αk−21k−1 ⊗ 1k−2 ⊗ Lk−2),
(24)

and so on, until we have an ~α-weighted sum over all k of
the base graphs (with an overall denominator of α1 = 1),
which is precisely LΠ~αk.

The proof of statement 2 follows as a direct conse-
quence of Lemma II.2, with K = Mi+1, L = Li, and
α = βi+1.

Theorem II.1 provides an algorithm to compute the
spectrum of LΠ~αk, namely:

1. Compute the relative weight vector ~β from ~α.

2. Start with i = k, where the spectrum of Mk = Lk
is known. Decrease i by one.

3. Compute the spectrum of Mi from the known spec-
trum of Mi+1 and Eq. (22). Decrease i by one.

4. Perform step 3 repeatedly, halting at i = 0. Return
the spectrum of M1 = LΠ~αk.

Therefore, given a large hierarchy, one can efficiently
compute the Laplacian eigenvalues and use them to find
bounds on important graph properties. This is a scal-
able technique for obtaining figures of merit efficiently
for hierarchies. Later, in Sec. III, we will present ana-
lytic results for some of these figures of merit for simple
hierarchies, but the results of the current section can be
used even in more complicated cases, such as hierarchies
that do not use the same G at every layer or that have
heterogeneous scaling parameters.

FIG. 4. Two topologies with the same number of nodes (28)
and edges (49). While the diameters for the two graphs are
the same, are they equally well-connected? A comparison
of the Cheeger constants (see Table I) suggests that the left
graph is less interconnected. This is consistent with the spec-
tral gap, which is smaller for the left graph, indicating poorer
connectivity.

Due to the structural richness and heterogeneity of
graphs, it is not always easy to decide whether one graph
is, for instance, more connected than another graph. One
aspect of connectivity is how close the nodes are to one
another, which is captured by quantities like the diame-
ter and mean distance. In Fig. 4, we compare two graphs,
C7 Π K4 and K7 Π C4, which have an identical number
of nodes (28) and edges (49). The two graphs also have
identical diameters (5 each), but the mean distance for
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Graph Invariant C7 ΠK4 vs. K7 Π C4 C13 ΠK5 vs. K13 Π C5

Number of edges 49 49 143 143

Number of nodes 28 28 65 65

Diameter 5 5 8 5

Mean distance 2.68 2.71 4.77 3.23

Cheeger constant 0.17 1.0 0.07 1.4

Spectral gap λ2 0.16 0.46 0.04 0.34

TABLE I. Comparison of topologies by connectivity measure.
In each case, the graphs being compared have an identical
number of nodes and edges. The better value for each com-
parison is underlined.

the left graph is smaller (see Table I). Under these mea-
sures, the left graph appears better connected.

Better connectivity also corresponds to having fewer
bottlenecks in the graph, which corresponds to a larger
Cheeger constant. In Fig. 4, the graph on the right has a
larger Cheeger constant, as one would expect given that
it has complete connectivity between the seven modules.
Note that this metric of connectivity need not agree with
the mean distance, as seen in this example.

Similarly, a parameter-by-parameter comparison of the
two hierarchy graphs C13 Π K5 and K13 Π C5 (Table I)
reveals that, while both graphs are two-level hierarchies
with the same number of nodes and edges, K13 Π C5

has the smaller diameter, smaller mean distance, larger
cheeger constant, and a larger spectral gap, all of which
indicate better connectivity. While structural compari-
sions for the above examples can be carried out simply
by inspection or a quick calculation of graph quantities,
general hierarchies may be far too complex to compare
this way. In practice, when choosing a modular topology
with the best connectivity, one might hope for a single,
balanced measure of connectivity that relates to aspects
such as node distance and bottleneckedness and is easy
to compute. The spectral gap λ2 meets these require-
ments. It is asymptotically related to the other invariants
discussed here via upper and lower bounds in Eqs. (13)–
(15). Furthermore, λ2 can be efficiently computed using
the recursive procedure described earlier in this section.

5. Truncated Hierarchical Product

In some scenarios, there may be physical or techno-
logical limitations on the total number of interconnec-
tions allowed at a single node of a quantum computer.
In our framework, this manifests as a restriction on the
maximum degree of a node. We believe that hierarchical
structures can still prove useful in this context, but (as
we will see in Sec. III) the hierarchy we have described
thus far has a maximum degree which grows linearly with
the number of levels of the hierarchy.

We now introduce an architecture which maintains the
hierarchical properties but also has a bounded maximum
node degree (i.e. maximum node degree that does not

FIG. 5. A demonstration of how our hierarchical product can
be truncated to avoid requiring many interconnections at one
node. As the hierarchy grows, the graph is duplicated and
then attached to a subset of nodes in a larger version of the
base graph, G.

go to infinity as the number of levels goes to infinity).
To model such an architecture, we modify the hierarchi-
cal product G1 Π G2. Whereas previously, |G1| copies
of G2 were connected according to G1, we now bring to-
gether |G1|−1 copies, which we connect according to G1,
and add the root node of G1 without an associated sub-
hierarchy (see Fig. 5). When extended to a many-level
hierarchy, this means that every node will be connected
to, at most, two levels, and so its degree will not grow
as the hierarchy grows. We will denote this truncated hi-
erarchical product by G1 Γ G2, and its weighted version
as G1 Γα G2. It can be written algebraically in terms of
adjacency matrices by adopting a more general definition
of the hierarchical product.

Definition II.3. Given rooted graphs G and H, the
weighted truncated hierarchical product P = G Γα H is a
graph on vertices VP = VG×VH and edges EP ⊆ VP×VP
specified by the adjacency matrix

AP = αAG ⊗DH + PG ⊗AH , (25)

or, equivalently, the algebraic Laplacian

LP = αLG ⊗DH + PG ⊗ LH . (26)

Here, PG is a projector onto all nodes in G except the
root node. At the level of adjacency matrices, we may
also write AP = AG Γα AH . An unweighted version,
G ΓH, can be obtained by setting α = 1.

An illustration of this architecture can be found in
Fig. 5. From this definition, we naturally derive both
unweighted and weighted truncated hierarchies, GΓk and
GΓ~αk. We note that a generalization of this definition to
allow an arbitrary projector (rather than one that only
excludes the root node) is possible, but we do not con-
sider such a case in this paper.

The addressing scheme outlined in Sec. II B 3 can also
be used for truncated hierarchies. However, since many
nodes do not sit atop sub-hierarchies in this case, not
all node addresses are valid. We will assume that the
node in the i-th level which connects to the level above
it has a zero in the i-th digit of its address. In a trun-
cated hierarchy, each node whose address contains a zero
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(representing the “root” of a hierarchy) must have only
zeros in all following positions, as it does not contain any
further sub-hierarchies. The base-n addressal scheme can
thus be used to specify which nodes are present in a trun-
cated hierarchy.

Note that the truncated hierarchical product adds
nodes more slowly than (although with the same scal-
ing as) the hierarchical product structure specified at the
beginning of Sec. II B. When we perform graph compar-
isons in Sec. III, we will consider all cost functions and
optimizations in terms of the total number of nodes so
that the two architectures can be compared fairly.

III. GRAPH COMPARISONS

Having developed the machinery to construct hierar-
chies, we will now evaluate them against other potential
architectures. Any evaluation is impossible to do in an
absolute sense, since what properties are desirable in a
graph and how serious the cost of improving them is will
depend on both the application as well as the physical
system under consideration. In general, we assume that
the most desirable quality of a graph is some measure of
connectivity or the ease with which the graph can trans-
port information between nodes. Note that it is always
possible to translate between quantum circuit architec-
tures with some overhead. A detailed atlas summarizing
these overheads can be found in Ref. [46].

We will look at the scenario of state transfer, which is
an important subroutine that may need to be carried out
if an algorithm requires gates to be performed between
two qubits that are not directly connected. We consider
the worst-case state transfer time on a given graph, which
allows us to evaluate graphs without reference to any
particular quantum algorithm. If we are interested in the
time taken for state transfer in the graph, an appropriate
metric can be the diameter of the graph, δ(H), under
the assumption that information transfer takes unit time
along any edge in the graph. The diameter then captures
the maximum distance, and hence the maximum time
required for information to travel between any two nodes
in the system.

For graphs produced by the weighted hierarchical
product, we will also consider a diameter which takes into
account edge weight. This “weighted diameter,” δw(H),
can be found by considering all pairs of nodes j, k and
identifying the two whose least-weighted connecting path
has the highest sum weight of edges. If we consider a
path between two nodes j and k to be a set of nodes
P = {j, v1, v2 . . . vn, k} with a weight W (P ) given by the
sum wj,v1 +wv1,v2 + · · ·+wvn,k, then the weighted diam-
eter can be written as:

δw(H) = max
j,k

min
P

W (P ). (27)

One way to grasp why the weighted diameter is a useful
quantity is to consider the time weights of edges, where

the weight signifies the time required to perform a gate
between two connected qubits. In this case, the weighted
diameter is the maximum time it will take us to perform
a chain of two-qubit gates that connects two different
qubits (for instance, using SWAP operations to bring the
two qubits to adjacent positions and then performing the
final desired operation).

However, optimizing only with respect to connectivity
yields a trivial result, because a fully connected graph
is obviously most capable of communicating information
between any two points. Therefore, we will consider
a number of different possible “costs” associated with
physical implementations of graphs. One potential input
to the cost function is the maximum degree of a graph,
∆(H). As discussed in the previous section, we want to
avoid needing to connect too many different communi-
cation channels to a single node. Another is total edge
weight w(H) – if it costs time, energy, money, coherence,
or effort to produce communication between two nodes,
we should try to use as few communication channels as
possible.

We now walk through the calculations for several im-
portant graph quantities for several graphs: an all-to-all
connected graph, a cycle graph, a star graph, a square
grid, a hierarchy graph with scaling parameter α, and
a truncated version of that same hierarchy graph. We
calculate how quantities scale with the total number of
nodes N . For ease of calculation, we assume that N
nodes fit in the architecture of the current graph; for
instance, we assume N = `d for some integer ` for a
d-dimensional square graph. All results of this section
are compiled in Table II, and examples of the graphs for
small N are illustrated in Fig. 6.

A. Graph Calculations

1. Complete Graph, KN

Since all nodes in a complete graph [Fig. 6(a)] have
edges between them, the diameter is simply 1. This
comes at the cost of very high maximum degree, N − 1,
as every node is connected to all N − 1 other nodes. The
total weight of every edge is the same, and there are
N(N − 1)/2 edges because every pair of nodes has a cor-
responding edge. Therefore, the total edge weight scales
as Θ(N2).

2. Cycle Graph, CN

In a cycle graph [Fig. 6(b)], the diameter is bN/2c, the
distance to the opposite side of the circle. The maximum
degree is only 2, and the total weight of the edges is
likewise only N . This graph is thus able to reduce the
cost factors associated with the complete graph, but at
the cost of a much higher asymptotic diameter.
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FIG. 6. Illustration of the graph structures considered in this section, each with nine nodes except (f). (a) The complete graph
K9. (b) The cycle graph C9. (c) The star graph S9. (d) The nearest-neighbor grid in two dimensions. (e) The hierarchical
product KΠ2

3 . (f) The truncated hierarchical product of Sec. II B 5, KΓ2
3 .

Graph H Diameter δ Weighted Diameter δw Maximum Degree ∆ Total Edge Weight w(H)

KN const. const. N N2

SN const. const. N N

CN N N const. N

Square grid, d-dim dN1/d dN1/d d dN

KΠαk
n , α 6= n lognN max

(
2

1−α , N
logn α

)
n lognN nNmax(1,logn α)

KΠαk
n , α = n lognN max

(
2

1−α , N
logn α

)
n lognN nN lognN

KΓαk
n+1 , α 6= n lognN max

(
2

1−α , N
logn α

)
n nNmax(1,logn α)

KΓαk
n+1 , α = n lognN max

(
2

1−α , N
logn α

)
n nN lognN

TABLE II. Summary of scalings of important graph properties with total node number, N . All entries describe only the scaling
of the leading coefficient with d, n, and N .

3. Star Graph, SN

The star graph is the graph which has a single central
node connected to all others [Fig. 6(c)]. Like the com-
plete graph, it also has a constant diameter, although
this diameter is two rather than one. The maximum
degree of the star graph is N − 1, the same as the com-
plete graph. However, the star graph improves over the
complete graph, as it has a lower total edge weight of
N −1 rather than

(
N
2

)
. Thus, we have improved the cost

asymptotically without affecting the overall scaling of the
diameter of the graph.

The example of SN raises a complication which we do
not attempt to quantify in this paper. In a realistic dis-
tributed quantum computer, we expect that a significant
amount of operations need to be performed at the same
time and need to be scheduled on the graph. But in
the star graph, all operations between nodes must pass
through the single central hub. This is likely to lead to a
scheduling bottleneck when performing general quantum
algorithms. While we do not attempt to treat scheduling
of such algorithms on the network in this paper, in future
work we hope to consider these complications, which will
at times make the star graph unsuitable for real-world
use. An experimental comparison of the star graph and
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the complete graph in existing five-qubit quantum com-
puters can be found in Ref. [47]. In those experiments,
the requirement that all information be shuttled through
a central node for the SN connectivity made high-fidelity
execution of quantum algorithms more difficult.

4. Square Grid Graph

We consider now a square grid (i.e., a hypercubic lat-
tice) in d dimensions [Fig. 6(d)]. Here, the diameter is
d(N1/d − 1), since this is the distance from the point
in one corner labeled (1, 1, 1, . . . ) to the opposite cor-
ner at (N1/d, N1/d, . . . ) (note that diagonal moves are
not allowed). The maximum degree depends on the di-
mension, as each interior node is connected to 2d other
nodes. The total edge weight can be found by considering
that each node on the interior of the graph corresponds
with exactly d edges, and it is these edges that dominate
as N → ∞. Therefore, the total edge weight scales as
Θ(dN).

5. Hierarchy Graph, GΠ~αk

As the hierarchy graph [Fig. 6(e)] is built recursively,
it is easiest to calculate its properties using recursion re-
lations. We consider a graph that has k levels to it, so
that given a base graph G and n = |G|, then the overall
graph has nk nodes.

First, we calculate the unweighted diameter of a k-level
hierarchy, which we denote by δ

(
GΠ~αk

)
. Since all sub-

hierarchies are rooted at their first vertex, we will need to
keep track of the eccentricity of the root node, which we
denote by ε(F ) for any subhierarchy F . The eccentricity
of any graph node is defined as the maximum distance
from that node to any other node in the graph F . Here,
we fix ε(F ) to be the root eccentricity for the graph in
question.

Now, we write recursion relations for two quantities,
the unweighted diameter δ(GΠ~αi) of an i-level hierarchy
for some intermediate i, and the eccentricity ε(GΠ~αi) of
the top-level root node of the current i-level hierarchy.

Consider a diametric path in an i-level hierarchy. This
path must ascend and descend the entire hierarchy. That
is, using the notation of Sec. II B 3, two maximally sep-
arated qubits have addresses that are different in their
first digit. Such a path can always be partitioned into
3 disjoint pieces, the terminal two of which each lie in
some (i − 1)-level subhierarchy, while the middle piece
lies in the current top (i.e. i-th) level. These three pieces
must be independently maximal, since the path is dia-
metric. The middle piece maximizes to the diameter of
the top-level graph, which is simply δ(G). The two sub-
level pieces each maximize to the root eccentricity of the
(i− 1)-th level subhierarchy, which is precisely the quan-

tity ε(GΠ~α(i−1)). Therefore, our first recursion reads

δ(GΠ~αi) = 2ε(GΠ~α(i−1)) + δ(G). (28)

The i-th level root eccentricity may be found by a similar
argument. Partition the most eccentric path (starting at
the top level root node) into two pieces, one which lies at
the top level, and the other which lies exclusively in the
lower levels. Maximizing both pieces, one gets

ε(GΠ~αi) = ε(GΠ~α(i−1)) + ε(G). (29)

Solving the second relation, we get ε(GΠ~αi) = iε(G). By
substitution, the first recursion has the solution

δ(GΠ~αk) = 2(k − 1)ε(G) + δ(G). (30)

Since the total number of levels is given by k = lognN ,
and the graph diameter is no greater than twice the ec-
centricity of any node, we conclude that the diameter
scales as Θ(ε(G) lognN) for a general graph G. If we
specifically examine the case when G is a complete graph
of order n, δ(G) = 1 and ε(G) = 1, and the exact expres-
sion is δ

(
GΠ~αk

)
= 2 logn(N)− 1.

Next we calculate the maximum degree. Again, we
proceed by recursion. Iterating the hierarchical product
to some level i can be viewed as attaching a copy of the
graph GΠ~α(i−1) to every point in the graph G. Therefore,
the degree of every root node in the (i− 1)-level subhier-
archies increases by the degree of the corresponding node
in graph G. The maximal increase achievable thus is the
maximum degree ∆(G) of graph G. Since the root node
for an i-level subhierarchy has i distinct copies of G at-
tached to it, its degree is given by i · deg (g1), where g1

is the root node of G. Then, the i-level maximum degree
can be expressed as

∆(GΠ~αi) = max
{

(i− 1) deg (g1) + ∆ (G) ,∆(GΠ~α(i−1))
}

(31)

. . . = max
0≤j≤i−1

{j deg (g1) + ∆(G)} (32)

= (i− 1)deg (g1) + ∆ (G) , (33)

where the second step was obtained by recursion. For
a general G, this gives the maximum degree scaling as
∆(GΠ~αk) = Θ(lognN). For KΠ~αk

n , the root degree and
the maximum degree of the base graph Kn are both n−1,
so ∆(KΠ~αk

n ) = (n− 1) lognN .
Now we consider the total edge weight of the hierarchy.

We compute this by a recursion relation, first by dupli-
cating the existing edge weight at i − 1 levels by n (the
number of smaller hierarchies we must bring together)
and then adding new edges. If the edges at level i have
weight αi, we can write this as:

w(GΠ~αi) = nw(GΠ~α(i−1)) + αiw(G). (34)

By counting the number of subhierarchies with different
weights, we find the following form for the total edge
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weight of the weighted hierarchy:

w
(
GΠ~αk

)
= w(G)

k∑
i=1

αi |G|k−i . (35)

This can be verified by checking that it satisfies the re-
cursion relation Eq. (34). If we now specialize to the case
where G = Kn and αi = αi−1, we find

w
(
KΠαk
n

)
=
n(n− 1)

2

k∑
i=1

αi−1nk−i. (36)

This behavior can be broken into three regimes. For
α = n, the sum is constant, and the overall scaling is
Θ(nN lognN). Otherwise, we can perform the geomet-
ric sum to obtain

w
(
KΠαk
n

)
=
n(n− 1)

2

nk − αk

n− α
. (37)

Here, the scaling will depend on the relative size of n and
α. For n > α, the first term in the numerator dominates,
and w

(
KΠαk
n

)
= Θ(nN). Otherwise, we can write αk =

N logn α and find w
(
KΠαk
n

)
= Θ(nN logn α).

Finally, we calculate the weighted diameter of a k-
level hierarchy δw(GΠ~αk), just as for the unweighted
diameter, by solving recursion relations for the quanti-
ties δw(GΠ~αi) and εw(GΠ~αi), which are, respectively, the
weighted diameter and weighted root eccentricity for an
i-level weighted hierarchy. Here, note that the top level
(at any intermediate stage i) is weighted by αi. There-
fore, the recursion for the weighted diameter is modified
to

δw(GΠ~αi) = 2εw(GΠ~α(i−1)) + αiδw(G). (38)

Similarly, the recursion for the weighted eccentricity be-
comes

εw(GΠ~αi) = εw(GΠ~α(i−1)) + αiεw(G), (39)

which has the solution εw(GΠ~αi) = εw(G)
i∑

j=1

αj . Finally,

we have

δw(GΠ~αk) = 2εw(G)

k−1∑
j=1

αj + δw(G)αk. (40)

For G = Kn and αi = αi−1, this becomes:

δw(KΠαk
n ) = 2

k−1∑
i=1

αi−1 + αk−1 (41)

=
αk + αk−1 − 2

α− 1
. (42)

Therefore, the scaling of the weighted diameter with N
has two regimes, depending on α. For α < 1 the geo-
metric sum converges as i → ∞ to 2

1−α . This means

that for α < 1, a constant time suffices to traverse the
entire hierarchy no matter how large it is. For α = 1
the weighted diameter is equal to the (unweighted) di-
ameter, which we have already computed. For α > 1,
δw scales as αk−1 = N logn α/α ∼ N logn α. Note that the
last scaling only applies if α does not scale with n. Since
n > 1 and α > 1, this exponent logn α is always positive.
Therefore, the total edge weight is asymptotically always
either constant (for α < 1) or growing (for α ≥ 1), as
expected.

6. Truncated Hierarchy, GΓ~αk

Finally, we look at how the results above are modified
if we use the truncated hierarchical product discussed in
Sec. II B 5 [Fig. 6(f)]. Although many of the calculations
in terms of the number of levels k are similar to those
for the non-truncated hierarchy, it is no longer the case
that k = lognN exactly. In order to compare graphs
fairly, we will need to recalculate the order of GΓ~αk so
that results in this section can be written in terms of the
total number of nodes, N .

Under the node addressal scheme of Sec. II B 3, the
nodes of a truncated hierarchy are in one-to-one corre-
spondence with base-n strings of length k that only have
trailing zeros. As before, a 0 label points to a root node,
but since root nodes do not bear subhierarchies due to
truncation, all subsequent labels are forced to be 0. In
other words, we only label nodes using strings of the form
(l1l2 . . . li00 . . . 0) for some i ≤ k, and lj 6= 0 for all j ≤ i.
The number of such strings with i nonzero labels fol-
lowed by (k − i) zero labels is (n − 1)i. Therefore, the
total number of nodes is

N =

k∑
i=0

(n− 1)i. (43)

Since N = Θ
(
(n− 1)k

)
, many quantities of a truncated

hierarchy with a base graph of order n+ 1 have the same
scaling with the number of nodes N as those for a non-
truncated hierarchy with a base graph of order n.

In terms of the number of levels k, the maximum diam-
eter will be proportional to k, just as it was in Sec. III A 5.
It follows that the diameter scales with the total number
of nodes as δ = Θ

(
logn−1N

)
for a truncated hierarchy.

On the other hand, truncation offers a large improve-
ment in the maximum degree of the hierarchy. As dis-
cussed in Sec. II B 5, the maximum degree of the trun-
cated hierarchy is ∆(GΓ~αk) = 2∆(G), which is constant
in N .

The edge weight recursion relation is simply n − 1
copies of the current graph and then new, additional
edges:

w(GΓ~αi) = (n− 1)w(GΓ~α(i−1)) + αiw(G). (44)

This is identical to the recursion relation for the standard
hierarchy, Eq. (34), except that there are now only n− 1
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copies, and also, for a given number of qubits N , the
number of levels k may be different by constant factors
and terms. Thus, the only modification to the recursion
relation is to replace n with n−1, and the solution of the
relation is otherwise identical. This means that none of
the asymptotic scaling with k is affected, and the scaling
with N is only affected by changing the total number of
levels required to construct a graph of N nodes.

The recursion relation for weighted diameter is similar
to Eq. (38). Due to truncation, one needs to make a
careful comparison of paths that do or do not terminate
at the root node of the top level, but in any case the
weighted diameter’s scaling with k is the same as the
non-truncated weighted diameter’s scaling. The weighted
diameter scaling with N can thus be found from Eq. (42),
using the appropriate value of k for truncated hierarchies
with N nodes.

B. Choosing Among Graphs

1. Graph Embeddings

The long list of comparisons summarized in Table II
can make it difficult to see exactly when different graphs
are preferable. To make our calculations more concrete,
we would like to compare concrete scenarios for the con-
nection of qubits arranged on a grid in d dimensions.
Specifically, in each dimension (d = 1, 2, and 3), we ex-
amine a hierarchy that is embedded into the grid, com-
paring its properties to the same grid but with nearest-
neighbor connections. We consider building modules
where each small module is a complete graph of size n,
laid out in cubes on the grid so that the side-length of
the cube is n1/d. The d = 1 and d = 2 cases with n = 2d

are illustrated in Fig. 7.
As shown, the length of an edge must increase by a

factor of n1/d (2 in Fig. 7) at every level of the hierarchy
in order to make these hierarchies possible. Therefore,
to determine the total length of wire used, we can use a
cost weight with α = n1/d. Keeping factors of N only,
Table II shows that for d = 1, we expect a total cost
weight Θ (N lognN), while for the higher-dimensional
cases we expect a total cost weight Θ (N) [48]. For the
d-dimensional grid, this total cost weight is always Θ(N).

Now, to consider the performance of the two graphs,
we must fix a separate scaling factor for the time weight,
β. There are several options which might be reasonable
for different physical applications. If β = 1, i.e., all links
act identically in terms of time required to traverse them,
then the weighted diameter of the hierarchy is simply
Θ(lognN). Another option would be to take β = α, i.e.,
to assume that links take as long to move through as
they are long. In this case, we find that the hierarchy’s
weighted diameter scales as Θ

(
N1/d

)
, meaning that the

hierarchy and nearest-neighbor graphs match in perfor-
mance.

We may also want to allow hierarchies to make use

FIG. 7. An illustration of the embedding of a hierarchy on
a (a) one- or (b) two-dimensional lattice of qubits. In both
cases, the length of an edge doubles at every level of the hier-
archy, but the scaling in total edge length used changes from
Θ(N log2 N) to Θ(N) when going from 1 to 2 dimensions. In
d = 3, a similar hierarchy with doubling length scales con-
nects modules of eight qubits.

of the “fat tree” concept to produce a better-performing
graph [42]. Suppose that we allow ourselves to “spend
more” on higher-level links, causing their cost weight to
increase with a factor α, but improving their performance
so that the time weight scales with the factor β = 1/α.
In this case, the question is what range of α allows for
the hierarchy to perform better than the nearest-neighbor
grid (lower time-weighted diameter) for less cost (lower
total edge cost weight)? (Note that this cost weight in-
cludes any contribution from “lengthening” wires at hire
levels of the hierarchy.)

To answer the first, we compare the two asymptotic
diameter scalings, Nmax(0,logn 1/α) and N1/d. This sug-
gests that if α ≥ n−1/d, the hierarchy will allow for
faster traversal than the nearest-neighbor grid. However,
we wish to avoid causing the hierarchy to have a total
cost weight that scales worse than Ω(N), which requires
logn α < 1. We find that a winning hierarchy can be
constructed if α lies in the range α ∈

[
n−1/d, n

)
. The

optimal α is as large as possible but less than n; at that
point an additional logarithmic factor is introduced to
the total cost weight scaling.

In these cases, we have not allowed the nearest-
neighbor grid to modify the weight (either kind) of its
links. This is because any modification in its cost or time
weight enters simply as a constant factor; if the individ-
ual links have weight c instead of 1, the overall weighted
diameter is just cN1/d while the total cost weight is just
cN . Of course, one can apply different constants to each
figure of merit, or apply c to one and 1/c to the other. In
order to make the nearest-neighbor grid match the per-
formance of the hierarchy, the unit-length time weight
would have to be N logn(α)−1/d while the unit-length cost
weight must not scale with N .
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2. Pareto Efficiency

Our calculation of various graph parameters suggests
that the hierarchy architecture offers significant advan-
tages over others. One way to make this comparison more
exact is to appeal to the economics concept of Pareto ef-
ficiency, which is used to designate an acceptable set of
choices in multiparameter optimization [49]. A choice is
Pareto efficient if switching to a different choice will cause
at least one parameter to become worse. Suppose we
eliminate all constants to focus only on the scaling with
N for three parameters: weighted diameter, maximum
degree, and total edge weight. By removing these con-
stants, we assume that the small multiplicative factors
they provide will not influence decision making. For sim-
plicity, we will assume that both cost and time weights
scale with the same factor, α.

FIG. 8. An example of a porcupine graph as defined in
Ref. [50], in this case, K4 Π S4.

For comparison, one could ask: what minimum num-
ber of edges is required for a graph on N nodes to have
maximum degree ∆ and diameter δ? Reference [50] an-
swers this optimization question partially, and constructs
what are known as porcupine graphs which achieve the
optimum, illustrated in Fig. 8. We observe here that
qualitatively, porcupines are modular, since they may be
described by attaching trees to the nodes of a complete
graph. In particular, the graph K√N Π S√N is a porcu-
pine graph that achieves a diameter δ = 3 and a maxi-
mum degree of ∆ = 2(

√
N−1) with the minimal number

of edges.
We summarize the scalings of these graphs in Table III.

Assume that n1/d ≥ α ≥ 1. In this case, we can find the
Pareto-efficient solutions by noting which options can be
eliminated. We see thatKN is strictly worse than SN and
can be eliminated; SN is then dominated by the porcu-
pine. CN is dominated by the square grid, which has
identical scaling of total weight and degree but lower di-
ameter. The square grid, in turn, is dominated by the hi-
erarchy due to the assumptions we have made on α. This
means that the two Pareto-efficient choices in this case
are the truncated hierarchy and the porcupine graph. If
we chose any option besides these two, we could improve
the scaling with respect to N without any trade-off by

Graph δw ∆ w

KN const. N N2

SN const. N N

CN N const. N

Square grid N1/d const. N

? K√N Π S√N const.
√
N N

? KΓαk
n+1

{
α 6= 1 N logn α const. N

α = 1 lognN const. N

TABLE III. An illustration of the scaling with N of three
key parameters to be used in Pareto optimization. Here δw
is the weighted diameter, ∆ is the maximum degree, and w
is the total edge weight of the graph. A star (?) has been
placed next to the two graphs we find to be Pareto efficient.
We have also included the α = 1 (unweighted) hierarchy in
the final row, as it has a different scaling for the weighted
diameter. Our Pareto efficiency judgment is made assuming
n1/d ≥ α ≥ 1.

switching to one of them. While this framework does not
offer a decision rule to choose between the porcupine and
KΓαk
n , the latter is clearly preferable if our aim is to cre-

ate a modular quantum system that does not rely on a
few centralized nodes. We stress that this optimization
procedure is only intended to evaluate the quantities and
graphs introduced, and the Pareto-efficient choices will
change if other figures of merit or other graphs are in-
cluded in the optimization.

3. Optimality of diameter for hierarchical graphs

The use of KΓαk
n may be further motivated via the

degree-diameter problem [51] (for a survey, see Ref. [52]).
Given a graph with a maximum allowed degree ∆ on
each node and diameter no greater than δ, the degree-
diameter problem asks for the maximum number of nodes
N(∆, δ) that such a network could hold. This problem
is practically well-motivated in the design of networks,
and may be answered for special classes of graphs. The
Moore bound, which is a bound for general graphs, states

that the number of nodes N is at most ∆(∆−1)δ−2
∆−2 . This

means that for a constant maximum degree ∆ ≥ 3, the
diameter satisfies δ = Ω(logN), meaning that hierarchi-
cal graphs have optimal diameter up to a constant factor.
Tighter bounds on the number of nodes may be shown,
for instance, when the tree-width of the graph is bounded.
Ref. [53] shows that graphs with small tree-widths t and
an odd diameter δ satisfy

N (∆, δ; t) ∼ t (∆− 1)
δ−1
2 . (45)

As discussed towards the end of Sec. II B 1, hierarchies
have low tree-widths. In particular, the tree-width of
the truncated hierarchy KΓαk

n is at most n−1. Next, the
diameter of the truncated hierarchy KΓαk

n is δ(k) = 2k−1
(which is odd), and the maximum degree is ∆(k) = 2(n−
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1). Comparing the number of nodes in this hierarchy
N(k) to the node capacity N (∆(k), δ(k);n− 1) as in Eq.
(45), we get

N(k)

N (∆(k), δ(k);n− 1)
>∼

nk

(n− 1) (2n− 3)
k−1

. (46)

Keeping the total number of nodes N fixed, consider
two limits: one, a shallow hierarchy in which the number
of levels k is O(1), and two, a deep hierarchy, in which the
size n of the base graph is O(1) [i.e., k = O(logN)]. We
see that when the hierarchy is shallow, the right side of
Eq. (46) is Θ(1), which indicates optimality. For a deep

hierarchy, the above ratio scales as 2− lognN = N
−1

log(n) ,
which is polynomially suboptimal. However, when n = 3,
the ratio in Eq. (46) is again Θ(1), and the truncated

hierarchy KΓαk
3 is degree-diameter optimal in this case.

IV. ENTANGLED STATE CONSTRUCTION

A. Setup

Although some of the graph properties calculated in
the previous section give a heuristic sense for the capabil-
ities of the hierarchical graph versus the nearest-neighbor
or all-to-all graphs, we would like to examine their per-
formance directly in terms of a quantum information pro-
cessing task. The task we have chosen as a benchmark
is the creation of a many-qubit GHZ state. Since this
entangled state is difficult to create across long distances
when using nearest-neighbor interactions, we hope that
it can serve as a useful yet basic benchmark for process-
ing quantum information with unitary evolution [15]. As
shown in Ref. [15], preparation of a GHZ state also pro-
vides a means of transferring a state across the graph.
Thus, the results of this section also bound state transfer
time. However, in this work, unlike Ref. [15], we focus
on the use of discrete unitary operations (gates) rather
than Hamiltonian interactions. This means that we can-
not take advantage of the many-body interference which
provided a speed-up in Ref. [15].

Using GHZ state creation as a benchmark for potential
quantum architectures allows us to use physical limita-
tions (represented by the Lieb-Robinson bound) to place
computational limits on information processing. The
GHZ state is directly useful on its own [13–15], but even
in systems which do not directly produce the GHZ state,
it is likely that quantum operations will require the cre-
ation of long-range correlations between distant sites. For
example, the same physical bounds which govern the cre-
ation of the GHZ state also restrict the speed at which
topological order can be produced [16]. We focus on the
GHZ state as an easy-to-analyze example for the problem
of creating these nonlocal correlations, but we stress that
our results generalize to any state which possesses non-
local correlations of the kind whose creation is limited by
the Lieb-Robinson bound.

We adopt a framework in which every vertex of the
graph represents one logical qubit, while an edge of the
graph represents the ability to perform a two-qubit gate
between nodes. For the purposes of this work, we assume
that we can ignore single-qubit operations, instead focus-
ing on the cost imposed by the required two-qubit gates
between nodes.

B. Analytical Results for Deterministic
Entanglement Generation

In order to create the GHZ state, we assume that
we begin with all qubits in the state |0〉 except for one
qubit that we place in the initial state |+〉. By perform-
ing controlled-NOT operations between this qubit and
its neighbors, a GHZ state of those qubits is created.
The state can be expanded by continuing to use further
CNOT operations to expand the “bubble” of nodes con-
tained in the GHZ state until it eventually spans the
entire graph. For state transfer, we instead assume the
initial state |ψ〉 to be transferred sits on one qubit, which
is then transferred through the graph using SWAP oper-
ations until it reaches its destination.

We first consider a graph which has been assigned time
weights, so that a gate between two linked edges can be
performed deterministically in a time given by the weight
of the edge between them. We assume that one node can
act as the control qubit for several CNOT operations at
once. Therefore, according to our protocol above, the
time tGHZ required to construct the GHZ state is found
by identifying the qubit that will take the longest to reach
from the initial qubit by hopping on the graph. A similar
argument holds for the state transfer time.

This implies that a GHZ state can be created, or a state
transferred, in time that scales like the (time-)weighted
eccentricity of the node we choose as the initial |0〉+ |1〉
state. However, if we take the further step in our anal-
ysis of maximizing over weighted eccentricities (identi-
fying the worst-case starting node), then the time will
simply be the weighted diameter of the graph as calcu-
lated in the previous section. Note that the difference be-
tween the best-case weighted eccentricity (the weighted
graph radius) and the worst-case weighted eccentricity
(the weighted graph diameter) over all nodes is at most
a factor of two – if we look at the midpoint of the path
that realizes the graph diameter, its distance to the end-
points of the path is bounded by the radius – so from the
perspective of how this time scales asymptotically with
N , the two are interchangeable.

C. Numerical Results for Probabilistic
Entanglement Generation

As shown in the previous subsection, in a deterministic
setting of entanglement generation where a gate between
two nodes of our graph H can be performed in fixed time,
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the time required to create a GHZ state is equal to the
weighted diameter δT (H). However, in many situations
in long-distance quantum information processing, prob-
abilistic or heralded methods might be used instead. We
might suppose that, in a small time step, the network suc-
ceeds in performing a desired two-qubit gate with prob-
ability p (and that we know whether the gate succeeded
or not). Upon failure, one can try performing the gate
again in the next time step without having to rebuild the
state from the beginning. In this setting, we expect that
the scaling will likely be similar to the deterministic case
but more difficult to calculate exactly. Fortunately, it is
easy to re-interpret the meanings of the edge weights to
account for this.

The main complication arising from the inclusion of
unitaries that do not get completed in a fixed amount
of time is that multiple paths between two nodes can
all contribute to the total probability that entanglement
has been produced, making it a harder problem to solve
exactly. However, we can turn to numerical simulation to
get an idea of the behavior. In the following, we define a
new edge weight called the probability weight, pij , which
is the probability of success of edge (i, j) in one time step.

The algorithm for simulating the creation of a GHZ
state is as follows:

• At each time step t, identify the subgraph F of
nodes that have already joined the GHZ state.

• For each edge between a GHZ node i ∈ F and a
non-GHZ node j /∈ F , identify the probability edge
weight pij . With probability pij , allow node j to
join the GHZ state in the current time step, t.

• Once all edges have been tested, repeat the proce-
dure for the next time step on the new, possibly
larger, set of GHZ nodes.

A single number p0 is chosen as the base probability,
so that the probability weights on the lowest level are
p0, and edges on the i-th level of the hierarchy succeed
with probability p0α

i−1. Note that we must fix α < 1.
As a first step toward evaluating the performance of a
graph, we estimate its time weights as wij = 1/pij , the
time required to perform a two-qubit unitary on average.
The overall estimate of the expected time taken is then
δT /p0, where δT is the time taken for the deterministic
case with time weights scaling by a factor β = 1/α at
each level. We find that this predicts very well the rate
at which the GHZ state can be constructed over a wide
range of α values (Fig. 9). The expected time remains
Θ
(
N logn(1/α)

)
.

For graphs with multiple potential paths between two
nodes, such as a two-dimensional grid, the expected time
is not simply the deterministic time scaled by the ex-
tra time factor the probabilistic setup requires in each
step. We can however still bound the expected time to
build the GHZ state E[tGHZ] above and below for a graph
H. We will bound it above by considering a modified
graph in which the only path between the initial qubit

and the qubit farthest from the starting point has dis-
tance dw(H). Such a path completes in time dw(H)/p0

on average. Since H has strictly more paths than this,
the expected time will be lower. However, the shortest
path between the initial and final qubits has total dis-
tance dw(H), which would take time dw(H) to complete
even if p0 = 1 and all gates were deterministic. Therefore,
no path can finish faster than this, and the expected out-
come over all possible paths cannot improve over dw(H).
We can therefore write the following restriction on the
expected time:

dw(H) ≤ E [tGHZ] ≤ dw(H)

p0
, (47)

where E[·] denotes the expected value. This implies
E [tGHZ] = Θ (dw(H)). Therefore, although the prefactor
is difficult to calculate, we can tell that the time required
to complete the creation of a GHZ state on the nearest-
neighbor graph with d = 2 is Θ(

√
N). This scaling im-

plies that the condition for the hierarchy to outperform
the nearest-neighbor grid in 2D is α ≥ n−1/2, which is
reflected in Fig. 9.
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FIG. 9. Graph-theoretic predictions and simulation of tGHZ

for the hierarchy KΠαk
3 at various α, and a two-dimensional

nearest-neighbor (NN) grid; p0 = 0.1. The
√
N fit shows the

scaling of tGHZ for the nearest-neighbor case, with a prefactor
in the range suggested by the text’s argument. Note that
since n = 3, the crossover for the hierarchy to asymptotically
outperform the nearest-neighbor grid is at α ≥ 1/

√
3 ≈ 0.58,

which is seen in the numerical results. Code for generating
this figure can be found at [54].

Using the GHZ-creation time and state transfer as ex-
amples, we can see many of the advantages of hierar-
chical graphs as network topologies. Such architectures
are able to rapidly incorporate a very large number of
qubits (exponential in the number of hierarchy levels),
while the time-weighted diameter (and thus communica-
tion time) grows linearly with the number of levels. Since
the weighted diameter is not substantially changed even
if we use the truncated hierarchical product of Sec. II B 5,
these benefits can also be realized in that setup.
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V. CIRCUIT PLACEMENT ON HIERARCHIES

A final reason we believe hierarchies could be a use-
ful way to organize modular quantum systems is that
they may be able to take advantage of straightforward
methods for circuit placement. Circuit placement is a
problem that arises when a quantum circuit or algorithm
must be translated onto a physical system [55]. Suppose
we are given a specification for a quantum algorithm in
the form of a circuit diagram, and we wish to run that
algorithm on a given quantum computer (which presum-
ably has enough quantum memory to perform that algo-
rithm). In order to translate the circuit into instructions
for our machine, we must identify each algorithm qubit
with a machine qubit and then determine how the in-
dividual quantum gates can be realized in our machine
[56].

Circuit placement is an important part of the quan-
tum software stack, just as the compilation to machine
code is in classical computers. By placing qubits which
must operate on each other often close together in the
real-world machine, we can minimize the amount of time
spent performing long-range quantum gates. However,
this problem is generally quite difficult for arbitrary in-
stances and in fact has been shown to be NP-complete
[55].

However, since we are interested in the sub-problem of
circuit placement on hierarchies, it is possible that the
hardness results of Ref. [55] do not apply and the exact
solution can be found in polynomial time, just as the
problem can be solved tractably in linear qubit chains
[57]. Whether or not an exact algorithm exists, we can
appeal to heuristics to efficiently place circuits as well as
possible. Such an approach is promising because hierar-
chies are extremely structured with clear prioritization of
clustering between small groups of qubits, which can be
recognized in the algorithm and matched to the physical
architecture.

To explain further, we consider the following model.
We suppose that we begin with a weighted circuit graph
C with a vertex set VC and an edge set EC , in which
an edge exists between two vertices if there is at least
one two-qubit gate between them in the circuit, with the
weight of the edge corresponding to the number of gates.
We then specify a machine graph, M , with vertex set VM
and edge set EM , in which each edge (u, v) indicates that
the machine can perform two-qubit gates between u and
v.

We now seek a mapping f : VC → VM that assigns
algorithm qubits to machine qubits. A mapping f has
a total cost found by considering, for every edge in EC
between vertices ci and cj , the shortest-path distance be-
tween f(ci) and f(cj) in M , multiplying that distance by
the weight of the edge in C and summing over all edges.
Thus, it captures the total distance that must be tra-
versed by all gates in order to execute the circuit when
the current mapping is used. Reducing this is expected to
reduce the amount of time spent performing SWAP gates

in order to connect two distant qubits. Performing this
mapping is an important subroutine in any quantum pro-
gramming framework, and at least one existing quantum
compiler has a “mapper” phase that takes into account
the actual graph that a program must be compiled onto
[58? ].

Our cost function is a choice made from convenience,
and others are possible. Using this cost function ignores
several important aspects of quantum circuits. First, our
cost function does not account for the fact that a differ-
ent mapping might allow for more parallelism, since it
evaluates the cost of each gate individually. In addition,
we take the circuit graph C as a given, when in fact many
different circuits exist for any given quantum operation.
In fact, it is likely that optimization of C could be per-
formed, possibly by using the structure of M itself. A
more realistic model for circuit placement may require a
back-and-forth in which a circuit is first placed, then op-
timized, then re-placed, and so forth. A more advanced
placement algorithm may even permit the swapping of
qubits throughout the circuit, thus optimizing the place-
ment of the quantum algorithm without constructing a
circuit connectivity graph as an intermediate step.

For this paper, we will ignore these concerns and pro-
ceed with a heuristic approach to circuit placement for
hierarchies. We describe our algorithm as “partition and
rotate,” as it requires these two basic subroutines. First,
qubits are partitioned into sub-hierarchies by examining
whether they are connected by many gates in C. This
process continues recursively, with each partition being
subdivided and so on until every qubit is identified with
its point in the hierarchy. This top-down process is then
followed by a bottom-up process in which each small clus-
ter is rotated so that its most-communicative qubit is at
the root of the sub-hierarchy, and then the partitions
themselves are rotated, and then clusters of clusters, etc.
Ideally, this results in a mapping in which every qubit is
(a) placed close to qubits it needs to communicate with
and (b) placed in easy access to other modules if that
qubit requires such access. We will now explore in detail
these subroutines and the circuit speed-ups that result.
We will place algorithms on a machine graph M which we
take to be defined by KΠk

n for some integer k. Note that
we examine unweighted hierarchies, but these methods
can be applied to weighted hierachies as well.

A. Partitioning

For the first step of our algorithm, we wish to divide
the computational graph C into n subgraphs which are
as disconnected as possible. In addition, since we wish to
assign each node in C to physically separate and limited
qubit registers, it is important that each of the subsets
has precisely |C| /n nodes. This problem is known as bal-
anced graph partitioning, and the problem of finding the
optimal solution is NP-complete for n ≥ 3 [59]. However,
heuristic methods exist which approximate the solution,
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FIG. 10. Illustration of how we might divide a hypothetical graph into smaller clusters. This process is repeated many times,
recursively.

and are widely used in the field of parallel computing
and circuit design [60]. We have illustrated this process
in Fig. 10.

Our method for performing circuit placement on hi-
erarchies relies on a subroutine that performs balanced
graph partitioning. There are many algorithms and soft-
ware packages from which to choose. Here, we have used
a software package called Metis, which implements an
algorithm called recursive bipartitioning [60].

We begin by supposing that we have the circuit graph
C and we wish to identify groups of |C| /n nodes which
have high connection to each other but low connection
outside of the group. This is accomplished by finding
a balanced graph partition in which the weight of the
edges connecting each group is minimized. If we call
the initial set of all nodes S, then we wish to identify
subsets S0, S1, . . . , Sn. In terms of the addressal scheme
of Sec. II B 3, all the nodes in set Si will have have digit
i in their base-n representation. In the next section, we
will discuss the choice of which digit to assign to each
set.

Once the subsets Si are found, partitioning can be run
again on that relevant subgraph, creating n new subsets
of this subset. Eventually, every node in the graph will
be identified with a lowest-level module of size n, a next-
level module of size n2, and so forth.

Here we have used a generalized, pre-existing algo-
rithm for graph partitioning. It is possible that the
specifics of this problem, and the possibility of co-
designing the precise quantum circuit implementing the
algorithm (and thus C) with the architecture, enable
more specific, better-performing approaches.

B. Rotation

Drawing partitions between qubits is not enough to
fully specify their placement into a hierarchy. If we con-
sider using the i-digit representation, we can imagine that
partitioning essentially describes the process of deciding,
from a set of qubits, which ones will share a digit in the
next level. However, these digits are more than arbitrary
markers, because there is one node in any sub-hierarchy

which connects to the hierarchy above. This node (which
we say has digit 0) has privileged access to communica-
tion with other sub-hierarchies. Therefore, in order for
our circuit placement to succeed, we should ensure that
the qubit on top of each sub-hierarchy is the one which
requires the most access.

In order to do this, we implement a second subrou-
tine, the “rotate” part of the algorithm. This is called
rotation because, once we know which qubits will be to-
gether in a module, we must choose how to orient them
relative to the larger modular structure. Whereas parti-
tioning is top-down (the full graph is broken into small
subgraphs which are then themselves partitioned), ro-
tation is bottom-up. Suppose the modular structure is
KΠk
n . We begin with sets of n qubits and must choose

which will be the top of each smallest instance of Kn. We
then take each partition of n instances of Kn and decide
which instance of Kn will connect to the next level up,
and so on. This process is illustrated in Fig. 11.

Note that the general structure of our algorithm is to
first go down the hierarchy, partitioning nodes, and then
to go up, re-arranging sub-hierarchies in the proper order.
We perform this procedure only once to obtain our circuit
mapping.

C. Results

Now that the placement algorithm is specified, we turn
toward examining its performance on quantum circuits.
We consider two separate questions. First, we investigate
whether the algorithm is effective – does it actually re-
duce, relative to a random assignment, the amount of dis-
tance that must be traversed in a circuit to execute all the
requested gates? Second, we will examine whether the al-
gorithm executes efficiently on a classical computer. This
second point is important because in general the problem
can be solved by brute-force search, but such a search re-
quires a time O (N !) to perform (although, as we stated
earlier, it is possible that an exact algorithm exists with
a lower time cost for the special case of hierarchies).

To investigate the above concerns, we examine the al-
gorithm’s performance on random circuits. For each trial,
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FIG. 11. An illustration of how and why the process of rotation works in our circuit placement algorithm. In this diagram,
red links represent gates to be performed (edges in C) and black ones are available communicative links (edges in M). In the
graph C, the qubits 1, 2, and 3 are all connected, and 3 is connected with 4. These qubits have been correctly placed into
clusters (1, 2, 3) and (4). However, if they are not rotated correctly (see left), the link between 3 and 4 can become quite long,
necessitating a long-range quantum gate. By properly rotating (right), the gate between links 3 and 4 becomes much shorter,
improving the placement.
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FIG. 12. Plot of the average ratio (total gate distance after
partition-and-rotate)/(total gate distance before) given 100
trials each for different numbers of random gates and random
qubits. Error bars represent one standard deviation. As the
number of gates begins to saturate the number of qubits, the
possible improvement from optimization begins to decrease.

we first generate a random circuit of Ng two-qubit gates
on N total qubits. The precise type of two-qubit gate
is irrelevant in this framework. Likewise, single-qubit
gates require no communication overhead, so we do not
consider them. The random circuit then implies a com-
putational graph C, where, as described above, the ver-
tices represent the algorithm qubits and the edge weights
represent the number of gates that must be applied be-
tween each pair of qubits. Once this computational graph
has been generated, we first attempt to map it blindly
to the hierarchy graph, using the addressing scheme of
Sec. II B 3 and an arbitrary order of the graph C. Then,
we apply partition-and-rotate and calculate the new cost
function. By comparing the cost function between these
two, we develop an idea of how much long-range quan-
tum information processing is eliminated by partition-
and-rotate. We perform this several times to build up

statistics on average time costs and average improvement.
Code which performs circuit placement and generates the
profiling figures included in this section can be found at
[54].

In our simulations, we test hierarchies KΠk
3 up to 729

qubits (k = 6). We find that as gates are added, the im-
provement over the initial cost is decreased. This is sen-
sible, because as more randomly placed gates are present,
different node mappings become more similar. Such an
effect will likely not be present for quantum algorithms
which do not have their gates placed randomly. For cases
in which the number of gates is significantly fewer than
the number of qubits, partition-and-rotate is able to sig-
nificantly reduce the cost function. We find that 100
gates can be placed on a 729 qubit hierarchy with a total
cost less than 20 % of the original on average. When
1000 gates are placed on a 729 qubit hierarchy, the final
cost is still only 40 % of the initial one. Results for KΠ4

3 ,
KΠ5

3 , and KΠ6
3 can be seen in Fig. 12.

Next, we examine the time required to place such a
circuit. Our code, most of which is written in Python3
but which uses a C implementation of Metis for graph
partitioning, can place 1000 gates on a 729-qubit hier-
archy in roughly two seconds when running on a 2015
MacBook Pro. Although the algorithm seems naturally
suited to parallelization, our implementation uses only
a single core. Our current implementation appears to
scale with the number of qubits as O(N) and not to de-
pend on the number of gates included at all once there
are a sizable number of gates. We illustrate these two
relationships in Figs. 13 and 14. These times compare
favorably to the times reported in Ref. [55], with much
optimization still possible in our implementation.

Note that using random graphs as described above
means that our results may not be valid for more gen-
eral quantum algorithms. It is possible that practical
quantum algorithms have structure that makes them ei-
ther particularly amenable or particularly difficult for
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partition-and-rotate algorithms to place, depending on
the actual algorithm being examined.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have developed the theory of hier-
archies using the existing binary operation of the graph
hierarchical product. We have shown that hierarchies
may be a promising architecture for large quantum in-
formation processing systems. To demonstrate this, we
analyzed both properties of the underlying graph (such
as diameter, maximum degree, total edge weight) as well
as the time it would require to perform a representa-
tive quantum information process (constructing the GHZ
state/state transfer) in both deterministic and probabilis-
tic settings. We have also computed and tabulated these
properties for many other graphs which appear as poten-
tial architectures, for comparison. We have shown that,
for much of parameter space, hierarchies have favorable
scalings in cost and performance with the total number of
qubits N compared to these competitors. Also, since hi-
erarchical graphs are hyperbolic, they share many of the
advantages of hyperbolic graphs such as efficient routing
schemes [61], network security [62], and node addressal
[63].

We have also presented a conceptually simple circuit
placement algorithm which allows for simple optimiza-
tion using existing graph-partitioning software packages.
Our partition-and-rotate algorithm scales well with the
number of qubits and gates in the circuit and reliably
reduces the total distance that needs to be traversed by
random quantum circuits, which we verified by simula-
tion.

One significant limitation of our analysis in this pa-
per has been that we remained confined to unitary op-
erations. Non-unitary operations (for instance, measure-
ments which are then fed forward to choose future uni-
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FIG. 13. Average run times over 100 trials for partition-and-
rotate on a 2015 MacBook Pro with a 2.6 GHz processor.
Each line represents an increasing number of gates for a con-
stant circuit size as measured by the number of qubits. Error
bars represent one standard deviation.

101 102 103

Number of qubits
10 2

10 1

100

Ru
n 

tim
e 

of
 p

ro
gr

am
 (s

) 10 Gates
100 Gates
1000 Gates

FIG. 14. Average run times over 100 trials for partition-and-
rotate on a 2015 MacBook Pro with a 2.6 GHz processor.
Each line represents an increasing number of qubits for a
constant number of gates. Error bars represent one standard
deviation.

tary operations) are capable of establishing long-range
correlations like those present in the GHZ state much
more quickly than unitary ones if measurements and clas-
sical communication are fast. In the future, we hope to
extend our results into non-unitary domains [64].

In addition, we have made the assumption that the
primary way in which quantum architectures will dif-
fer is the speed with which two qubits can communicate
(as represented by our time weights on edges). Another
important case might be one in which the primary way
edges are enhanced is by improving bandwidth or dupli-
cating nodes to provide parallel routes rather than affect-
ing gate speed directly. For some schemes, our abstract
notion equating the time of a two-qubit gate with the
edge weight may still be a useful tool of analysis, but in
other cases bandwidth and speed may not be interchange-
able. We intend to undertake the analysis appropriate for
this case in a future manuscript [64].

In this paper, we limited ourselves to consideration of
a few quantum processes (generation of a large entangled
state, or transfer of a state across the graph), which might
not be representative of other, more general distributed
quantum information tasks. Some algorithms, such as
Shor’s algorithm, are known to be able to run with lit-
tle additional overhead even on one-dimensional, nearest-
neighbor graphs [65]. Therefore, when selecting an archi-
tecture for a practical quantum computer, care will need
to taken to select the proper benchmarking task.

In future work, we hope to look at a wider variety of
quantum circuits and use those to better benchmark dif-
ferent modular architectures. In addition, we hope to
gain a better understanding of the treatment of proba-
bilistic links for general graphs. For instance, as we dis-
cussed briefly when assessing the star graph SN , one real
concern in a networked setting is whether some parts of
the network will form bottlenecks. To analyze the impact
of this in a general way will require a better understand-
ing of realistic quantum algorithms and the demands
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they place on a network. Analyzing more complex quan-
tum algorithms could also shed light on the performance
of partition-and-rotate placement algorithms in realistic
settings when sequencing and scheduling also enter into
consideration.

Finally, in addition to asking ourselves how current
circuits and algorithms can be executed on highly mod-
ular systems, we also hope to explore the possibility
that highly modular architectures open up new possibil-
ities for parallelized quantum algorithms. For instance,
Ref. [66] shows that quantum fan-out gates can be used to
parallelize gate sequences, decreasing the time to perform
an algorithm at the cost of requiring additional memory
qubits. Hierarchies could implement such schemes by us-
ing high-level connections to perform the initial fan-out
gates and then performing the various parallelized oper-
ations in each individual module.
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and M. Boguñá, Phys. Rev. E 82, 036106 (2010).

[37] F. de Montgolfier, M. Soto, and L. Viennot, in Proceed-
ings of the 2011 IEEE 10th International Symposium on
Network Computing and Applications, NCA ’11 (IEEE
Computer Society, Washington, DC, USA, 2011) pp. 25–
32.
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