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QUANTUM APPROXIMATE OPTIMIZATION
ALGORITHM (QAOA)

The QAOA is an approximate optimization algorithm
first introduced in 2014 by Farhi et al. [1], and has since
enjoyed growing interest. The QAOA uses alternating
evolutions under two non-commuting operators, typically
a problem (or cost) Hamiltonian H, that encodes the
cost function on the diagonal in (say) the o® basis, and a

N
transverse term Hp = — ) o/ that generates transitions
i=0

between bit strings, such that the initial state [+)$V
evolves into an approximate ground state of H 4.

Practically, the most valuable feature of the QAOA
seems to be its “learnability” via a classical outer loop
optimizer, where the discovery of the evolution angles in
the optimal QAOA schedule is achieved via the discov-
ery of structure in the angle sequences [2-4]. These pat-
terns are seen quite generally across local Hamiltonian
problems, and while steps towards a theory describing
optimal QAOA sequences have been taken [3], several
questions surrounding it remain open. Regardless, the
structure in optimal QAOA schedules may be harnessed
to implement approximate state preparation in a scalable
manner and with a low overhead on quantum resources.
We present a new heuristic method that helps achieves
this goal.

First, we discuss how to discover optimal QAOA1
schedules, i.e., QAOA schedules for p = 1.

QAOA, p=1

Despite its apparent simplicity, the p = 1 QAOA (or
QAOA1) can be a powerful state preparation ansatz.
For example, hardness-of-sampling results are known for
QAOAL1 circuits [5], closely mirroring the hardness of
sampling from instantaneous quantum polynomial (IQP)
circuits (see next section for details). Furthermore, it is
known that the performance of the QAOAL1 for certain
combinatorial optimization problems can be competitive
with the best classical algorithms for the same problems
[6]. Another desirable feature of the QAOA1 for local

spin Hamiltonians is the tractability of computing en-
ergy expectation values, as observed in [1]. A very sim-
ilar result has also been known in the setting of quan-
tum dynamics [7, 8]. For a two-local transverse field spin
Hamiltonian as in Eq. (1) in the main text, this leads to
a formula for the energy expectation under a state pro-
duced by the QAOAT1, starting from the product state
|[4+)®N. These formulas are applicable to many cases of
interest in quantum state preparation and optimization.
Importantly, the time complexity to compute the for-
mula is O(N?) in the worst case, making it tractable to
optimize the QAOAT protocols for large spin chains.

QAOA,p>1

The general analytical formula for p = 1 does not ex-
tend to the case where we apply the QAOA for more
than one layer. Here, we must turn to classical numeri-
cal methods to find the optimal QAOA angles 5;,~; for
each layer 7. For p layers, this is an optimization on a
2p-dimensional space that grows exponentially with the
depth of the circuit. However, numerics done here and in
[2, 4] have identified the existence of minima that exhibit
patterns in the optimal QAOA angles, namely that the
angles, when plotted as a function of their index 7, form
smooth curves for any p. While this observation points
to a deeper theoretical mechanism at play, it does not di-
rectly simplify the optimization problem, since we must
still search over all approximately smooth sequences of
the angles. Zhou et al. [2] have exploited the smoothness
of the functions by carrying out searches in the Fourier
domain. Here, we follow a different route that arises from
some novel observations of these family of minima.

For each p, denote the special optimal angles by

{(ﬁ*(p),'y*(p))} , which we can also think of as a pair
p

of angle curves (as a function of step index i). As p is
varied, we may think of these minima as a family. We
numerically find that this family exhibits the following
desirable features (for p sufficiently large):

1. The angles are non-negative, small and bounded.

2. For p sufficiently large, the two angle sequences
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Figure S1: Convergence in p and N. Convergence of optimal angle curves with increasing QAOA layers p (left), and
number of spins N (right). The p-convergence plot was generated for an N = 8 spin system, for p ranging from 20 up to 30,
with higher p shaded darker. The N-convergence figure was generated for a 15 layer QAOA, for N in the range of 4 to 14, with

higher N curves shaded darker.

£*®) and v*) are approximately smooth.

3. The angle sequence 3*(®) (and correspondingly,
7*(P)) when viewed as a function on the normal-
ized time parameter s; = ;;Tll, is convergent in the
parameter p. In other words, as p is increased, the
angle sequences 3*(?) and *(®) approach a smooth,
asymptotic curve (See Fig. S1.)

4. The energy expectation E(8*(®), *()) approaches
the global minimum as p — oo, and hence this
family is asymptotically optimal.

The significance of the first point is that in experimental
settings, large evolution times are infeasible to implement
due to decoherence, so these minima correspond to prac-
ticable QAOA protocols. The third and fourth points
suggest an inductive algorithm where a locally optimal
schedule for a given p may be discovered using the opti-
mal schedule for p — 1 as a prior.

Point 3 in the above list is a novel observation that
allows us to construct a heuristic that is efficiently scal-
able for large p. The main idea behind this construction
is that the minimal angle curves for a larger p may be
guessed from the optimal curve of a smaller p’ < p by
interpolation.

Using the above points, we use a bootstrapping algo-
rithm to find the optimal angle sequences, ) and *®)
for a given p, as described below. Let ¢ =1, ..., p denote
an intermediate angle index. Then:

1. For ¢ = 1, use an analytic formula to find 8*(") and
*(1)
~y* ),

2. For ¢ = 2, choose an initial guess of B(?) =
(6°, 50— 0.2) and 4 = (77, 4+ +0.2).

3. Perform a local optimization of 5() and v in
order to find 3*(?) and v*(?).

4. Repeat the next steps (5-7) for ¢ =3,...,p.

5. Create interpolating functions through the angle

sequences, (9= and 4*(@=1 using the normal-

ized time s; = ;:12 as the independent parameter

(we use a linear interpolation for ¢ = 3 and cubic
for g > 3).

6. Choose the initial guesses for 52 and v(9) by sam-
pling the interpolating function from (5) at evenly
spaced points separated by a normalized time dis-
tance of As =1/(q —1).

7. Perform a local optimization of 8@ and (@ in
order to find £*(9 and *(@.

The resulting angles 3*® and *®) should be at least
a good local minimum of the energy expectation value
and approaches the global minimum as p — oo.

The g = 2 interpolation in step 2 is based on our ob-
servation that the g angles tend to curve down at the
end and the v angles tend to curve up.

An important feature of our algorithm is that its
asymptotic runtime is expected to be efficient in p. This
feature is predicated on the previous result that the an-
gle curves are generally convergent as p tends to infinity.
The argument proceeds as follows: if we assume a maxi-
mal deviation of the initial guess for layer ¢ to be ¢, > 0,
then the total [;-norm distance between the initial guess
and the optimized curve is no greater than €,,/q, by the
Cauchy-Schwarz inequality. Therefore, the local search
algorithm is confined to a ball of radius at most €;,/q,



and for a fixed error tolerance, the convergence time for
a standard local optimizer is O(e2q). Summing over con-
vergence times for all from ¢ =1,...,p, we have

T=0 (fj q63> <0 (1)

The last inequality above comes about as follows: while
the summand depends on the convergence rate of the se-
quence {eq}zzl, it is upper bounded by O(q) for a con-
verging set of paths and an initial error €; of order 1. The
latter is true since our angle search domain is bounded
and independent of N. Therefore, the sum is no greater
than O(p2). In practice, even faster runtimes are pos-
sible. Therefore, the bootstrap algorithm exploits the
structure of the special minima and provides a scalable
route to multi-step QAOA for the long-range TFIM. In
fact, as discussed in the supplement and in [3], there is
mounting numerical evidence that the path approach ap-
plies across a very general variety of models on discrete
as well as continuous systems.

Convergence in N

In the previous sections, we introduced a bootstrap
algorithm that is asymptotically efficient in the number
of layers p. However, in order to be fully scalable the
algorithm must also be scalable in the system size N.
This may not be possible in general (say for random
spin models), as the optimized angles for a particular
small system may have no bearing on the angles for a
larger system. However, for the long-range TFIM, and
indeed any translationally-invariant model with a well-
defined notion of metric and dimension arising from the
functional form of the coupling coefficients J;;, it is rea-
sonable to expect that the optimized angles depend on
system size in a predictable way. This is indeed the case
for the long-range TFIM. There, it can be seen that the
angle curves for varying N appear similar in shape. Use-
fully, the curves also appear to be convergent to an ideal-
ized curve for a hypothetical continuous, long-range spin
chain. Once again, this feature suggests that the op-
timized QAOA angle curves for small systems may be
used as initial guesses for larger systems within the same
Hamiltonian family.

While it is not clear (due to numerical limitations) how
fast the curves converge, we argue that the rate should
be weakly dependent (or independent) of the system size
N. For a given coupling function (such as inverse power-
law) that decays as a function of distance, we define a
characteristic length scale, which may be called the skin
depth 6, that is the number of sites from the bound-
ary that the coupling is a factor of e smaller than the
nearest-neighbour value. In other words, we define §
such that J; ;46 ~ J;+1/e. Clearly, § is independent

of the system size N and depends only on the parame-
ters of the coupling function. For instance, for the long-
range TFIM, 6 ~ e'/®. As N tends to infinity, the frac-
tional skin depth 6/N then “falls away” and becomes
vanishing with respect to the bulk region of the chain.
Now, we make the assumption that any deviations in the
optimal QAOA schedules from N to N + 1 arise from
change in the fractional skin depth, which is reasonable
for a translationally invariant model. The incremental
change in the fractional skin depth from N to N + 1 is
§/N —§/(N +1) ~ O(1/N?). Therefore, if the change in
the optimal QAOA curves ey (in, say, [1-norm distance)
is a smooth function of the the fractional skin depth,
then we expect it to vary as ey ~ 1/poly(N). Therefore,
the total running time of a bootstrap from small system

N
sizes to a given size N should be O <Z l/poly(N))
k=1

which is sub-linear in N. Combining this observation
with the convergence in p, we see that for a given Hamil-
tonian family, optimized QAOA angle curves for small
p may be used as a rubric for the optimization for
longer circuit depths. Furthermore, if the Hamiltonian is
translationally-invariant with decaying interactions, the
optimized QAOA schedules are expected to scale with NV
as well. Therefore, the state preparation procedure under
the QAOA for such a Hamiltonian family is scalable in
circuit “volume”, for a wide range of Hamiltonian param-
eters (Fig. S2). This is our main theoretical contribution
in this work.

Scaling of 1 in p, N

Our performance parameter 7, defined as

E(ga ’7) - Emaa:

2
Egs - E’max ’ ( )

n=

measures how close (in energy) the prepared state is to
the ground state of the system. As described in previous
sections, the optimal angle curves for QAOA appear to
converge to a smooth, hypothetical curve, as a function of
p as well as N. We show that under the assumption that
such a curve exists, there is a fast heuristic for finding
optimal angles for any finite p that is time-efficient in p
and the number of spins N (when used in conjunction
with the quantum device). In this section, we show that
not only is the search efficient, but the quality of the
optimum is numerically seen to improve with p, N as well.

In Fig. S3, we show the result of the numerical study.
We chose as the target Hamiltonian an idealized trans-
verse field Ising model with inverse power-law couplings,
with the power o = 1.1 chosen to closely mimic the ex-
perimental Hamiltonian. The number of spins was var-
ied from N = 8 to 20. Via DMRG, the critical value of
the transverse field for a finite chain can be located by
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Figure S2: Angle sequence curves. A collage of angle sequence curves, arranged by the Hamiltonian parameters for which
they were computed. In each subplot, curves for different p ranging from 20 to 30 are overlaid, with higher p curves shaded
darker. The horizontal axis represents fractional step s = (i — 1)/(p — 1) ranging from 0 to 1, while the vertical axis gives the

value of the angles 8 (red), and v (blue) in the range [0, 0.6].

The subplots are arranged horizontally by —B/Jy, increasing

from 0.1 to 0.8 in steps of 0.1 (from left to right), and vertically by the long-range power o = 0.5,1.0, 1.5 (bottom to top). This
collage shows the persistence of structure in the optimal angle sequences for a range of Hamiltonians within the same family.
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Figure S3: Performance scaling in p, N. Behaviour of performance parameters n (left) and squared ground state overlap
(right) with increasing number of spins N (x axis) and p (colors), for ideal power-law coupling with o« = 1.1. We find that
for each p, 1/(1 —n) grows linearly in N with a slope that depends on p. (Inset) The slope is linear in p, suggesting that the
performance converges to 1 as 7 ~ 1 — 1/(pN). On the right, we empirically observe that |(1|¢0)|* ~ p/N, indicating that
constant overlap with the ground state can be achieved with linear depth QAOA. The z axis has been scaled as 1/N so that
the linear relationship with the squared overlap is apparent. The inset shows the linear trend with p.

maximizing the von Neumann entropy at half-cut. This
was done independently for each value of N. Then, us-
ing our heuristic, we located the optimal angle curve,
and computed 7 for the final state prepared using this
angle sequence, for each N. The plot shows the trend
of 1/(1 —n) with N, for a range of p = 0,1,2,3,4,5,
with 0 corresponding to a trivial protocol where the ini-
tial state is returned. While the number of spins could

not be extended beyond 20 due to computational limi-
tations, the trend is clear. We see that 1/(1 —n) grows
linearly with N and p (inset). While the linear trend in
N is encouraging, we similarly expect the inverse spec-
tral gap (and indeed, the density of low-lying states) to
increase with N. Empirically for the target Hamiltonian,
we observe a gap scaling of ~ 1/N?2. Assuming the den-
sity of low-lying states scales similarly, this suggests that



the squared overlap with the ground state should fall off
with N. Numerics confirm this expectation and indicate
a scaling of the squared overlap of |[(¥|1)|? ~ p/N.

The linear scaling with p for both the energy and fi-
delity metric, combined with a polynomial-time search
heuristic, suggests that for any desired energy (or proba-
bility) threshold €, our approach allows us to approximate
the state to within 1 — € (in energy or fidelity) in time
and number of layers that scale as poly(N,1/e).

Characteristic scale for 7

The figure of merit 1 characterizes how close the final
state is to the ground state of the system. At n = 0,
the system is in the highest excited configuration, while
7 = 1 corresponds to a perfectly prepared ground state.
QAOA, starting from the initial state |[+)®", gives a state
with figure of merit 7 € [0, 1], from the initial value of
no. The difference between the final 1 and 7 indicate
the success of our QAOA protocol.

While 7 is normalized to the range [0, 1], differences in
7 are still somewhat arbitrary. In long-range Ising models
with a transverse field 79 is not 0 but typically greater
than 0.5, making the difference in 7 an unsatisfactory
metric of success. Therefore, in addition to the initial and
final 1, we must provide a characteristic scale for n that
quantifies the typical deviation from 7g. A natural choice
is the standard deviation of n for QAOA with random
angles.

For QAOA1 with evolution angles 3, , it is possible to
estimate the standard deviation analytically as a function
of the underlying model parameters B and Jy and on the
number of qubits N. This derives from the analytical
formula for the energy expectation E(f,) which can be
stated as follows:

E(B,v)=Er+Er+ Erg (3)
where

N
Er =B []cos(2yJix) (4)

i=1 ki

sin (4 .
Err= —% Z Jijsin (2J;5) H cos (2vJix)  (B)
i ki,

o
Err= —w Z Jij H cos (2v (Jir + (—=1)*Jj1))

s=E1,6j ki

(6)

where the Hamiltonian has long-range power law cou-
plings J;; ~ ﬁ (with J;; = 0), and a transverse field
of strength B. Then, our goal is to compute the stan-
dard deviation (normalized by the spectral bandwidth

A= Eraw — Egs)a

o /B — (B3,
N A (7)

which gives us the characteristic scale for 7. We define
the average (-)g, as

. 1
D=l e [ [ 18isar 9
—Ty —T,

In the limit, the average is precisely the constant term
of the Fourier transform of f. Since the function is a
sum of trigonometric monomials, its moments over the
angle variables (3,7 can be computed analytically term
by term. We will need the following properties of the
coupling function:

1. (Symmetry) Since the inverse power law only de-
pends on distance between nodes, we have J;; =
J(2j—iy; In other words, the inverse power-law is
symmetric under a lateral flip (or “mirroring”). We
assume a finite, open chain, and therefore couplings
Jij with |j —i| > N —j do not have an image under
mirroring.

2. (Incommensurateness) The coupling strengths J;;
are, in general, mutually indivisible irrational num-
bers whose sums and differences are also irrational
and mutually distinct, e.g. for ¢ # j k # I,
Jir £ Jjk # Ja £ Jj; (with a very small set of ex-
ceptions due to, say, symmetry).

The mean (E)g ., consists of three parts corresponding
to the terms Ej, Eyr, Errp. Performing the S integral
first, we see that (Err)g,~ = 0. Next, we may argue that

in products of the form [] cos(2yJ;), the cosine factors
k

are of degree one if they have no mirror images, and de-
gree two otherwise. The only way to have a non-zero
expectation is if all terms are systematically paired up
by mirroring, so that the overall product is quadratic in
a product of cosines. For the summand in Ej, this can
only happen if N is odd and 17 is exactly at the center
of the chain, in which case the average is B/2(N-1/2,
When N is even, the mean is 0. Finally, for general 4, j
the last term is zero by property 2, since the cosines are
generically incommensurate and therefore barring very
few exceptions, most phases do not cancel out. How-
ever, in the special case that ¢,j are mirror images, i.e.
i = N — j, we have perfectly paired terms when N is
even (and one unpaired term at k = |N/2| when N is
odd). Counting all occurrences of this case, the mean

N
is approximately 2,\,/%“ Yo Jiv—i) S N.Jy/2N/? where
i=1

Jo is the nearest-neighbo? coupling in the chain. Note



that asymptotically in N, (E)s, ~ O(N/2N/2) which

approaches 0 in the infinite N limit.

Next, we estimate the term <E>%v By the orthogo-
nality of trigonometric polynomials in 3, we first have
that <E>5 . <E1>?3,w + <E11>/23 . <EH]> . Therefore,
we estimate each term separately. As before we require
that the cosines pair up so that their phases can cancel.

First, we have

N
<E1>/23,v =B? Z H cos(2vJir) cos(2vJk)  (9)
ij k=1

Each summand is a product of 2N cosines, and only
survives averaging if every cosine is paired. This happens
exactly when either ¢ = j or ¢ = N — j (There is also the
“disconnected” contribution that cancels with the mean).
In each case, the squared cosines give a factor of 1/2
from averaging. Moreover, using mirror symmetry we
can have fourth powers of some of the cosines, which
give a factor 3/8 from averaging. In all, the mean (minus
the disconnected part) is no greater than

(N-1)/2
3
(Er)3,, < ANB? (8) (10)

A similar reasoning for E;;, Err; give us the following
estimates:

1, 3\ (VD2
<EH>/MNZNJ0 3 (11)
(Err)3 <33 e (12)
II1)B,y S 16 0\g

Finally, this gives

N/2
(B3, SN ( ) 8B+ J3] ~ O(N - (3/8)™/%)

(13)
Therefore, we see that the standard deviation o, =

2 2
op/A ~ 7&:% - N1/4 (3/8)N/47 which is exponen-
tially suppressed for large N. For N = 20 ions, we have

N4 (3/8)N/4 ~ 0.02. While this is already small, the

. SB2tJ2 .. .
normalization TO will have an additional linear N

factor in the denominator, making the scale for n about
0.002. Therefore, a typical final QAOA performance of
n 2 0.95 is several standard deviations above a typical
Mo ~ 0.85.

EVIDENCE FOR HARDNESS OF SAMPLING
FROM GENERAL QAOA CIRCUITS

In this section we expand upon previous work [1] that
gives evidence for exact sampling hardness of QAOA cir-
cuits, using the techniques of Refs. [9, 10] to give evidence

for hardness of approximate sampling. First we relabel
the bases Y — X — Z so that the p = 1 experiment is
equivalent to preparing a state [¢o) = |1)EV, evolving
under a Hamiltonian H, diagonal in the Computatlonal
basis, followed by a uniform rotation H = e #%io7
and measurement in the computational basis. Follow-
ing Ref. [1], it suffices to consider QAOA circuits with
B = m/4. The output state is H®Ne=H= HON|0N) for
some cost function C' diagonal in the computational ba-
sis.

Generalized gap of a function

The main idea behind proving exact sampling hard-
ness is to examine a particular output amplitude, say the
amplitude of the |0V) basis state. In Ref. [9], the out-
put state after a so-called IQP circuit (which only differs
from the one here in that the final rotation is a global
Hadamard H®N instead of H®N) has an amplitude pro-
portional to a quantity known as the gap of a Boolean
function, gap(f) = Zw:f(x)zol — Zx:f(x):l 1, the dif-
ference in the number of inputs that map to 1 and the
number of inputs that map to 0 under f. Finding the gap
of a general function is a GapP-complete problem. This
is a very hard problem since the class GapP includes #P,
which in turn includes the whole of NP. The authors
of Ref. [9] prove that the gap of a degree-3 polynomial
over Zso, f, may be expressed as an output amplitude
of an IQP circuit. They also show that the finding the
gap of such functions f is still GapP-complete. Follow-
ing Ref. [9], we examine the |0V) output amplitude of a

QAOA state:

<ON|H®N —z’szH®N‘0N 2N Z y|ZZ yz+f($)|x>

- (14)

where now we define the function f to have the range Zy
and the Hamiltonian H, satisfies e~z |z) = if(®)|z)
for a computational basis state |z). The output am-
plitude is thus proportional to a ‘generalized gap’
88ap(f) == 2 u fa)=0 L T 20 pray=1 1 +1i2 w2 1t
i3 > f(x)=s L of a function f(z) = f(x) + wt(z), where
wt(x) is the Hamming weight of 2. This modified func-
tion f(z) is also a degree-3 polynomial over Z,. Note that
this restriction to degree-3 comes from the fact that the
gates Z, CZ and CCZ are universal for classical compu-
tation (indeed, the Toffoli alone is universal for classical
computation) and there is a natural degree-3 polynomial
coming from this construction. The quantity we have
defined, ggap(f), can be easily shown to be GapP-hard
to compute, by reducing gap to ggap. This suffices for
exact sampling hardness assuming the polynomial hier-
archy (PH) does not collapse.



Approximate sampling hardness

For approximate sampling hardness, we need two other
properties, namely anti-concentration and a worst-to-
average case reduction. Anti-concentration of a cir-
cuit roughly says that the output probability is suf-
ficiently spread out among all possible outcomes so
that not many output probabilities are too small. We
choose a random family of QAOA circuits by choos-
ing H, such that the function f(z) is a degree-3 poly-
nomial Zi,j,k Qi j kT T + Zi,j bijrix; + Y, cix; with
uniformly random weights b;; and ¢; € Z4. Anti-
concentration then follows from the Paley-Zygmund in-
equality and Lemma 4 of the Supplemental Material of
Ref. [9] (with r = s = 4).

Finally, we need to show that the problem of approx-
imating the generalized gap is average-case hard. Cur-
rently, no scheme for quantum computational supremacy
has achieved this, and the best known result in this di-
rection is in Ref. [10], where the authors show a worst-to-
average case reduction for the problem of exactly comput-
ing an output probability of a random quantum circuit.
The authors remark that their techniques may be ex-
tended to any distribution parametrized by a continuous
variable. In principle, we have such a parameter v avail-
able here, which continuously changes the parameters b; ;
and ¢;. However, we have only shown anti-concentration
when the weights b; ; and ¢; are chosen from a finite set.
It remains to be seen whether one can have the property
of anti-concentration and average-case hardness holding
at the same time for some specific QAOA output distri-
bution.

TRAPPED-ION EXPERIMENTAL SYSTEMS

In this work two quantum simulators have been used,
referred to as system 1 and 2. System 1 [11] is a room-
temperature ion-trap apparatus, consisting of a 3-layer
linear Paul trap with transverse center-of-mass (COM)
motional frequency vcom = 4.7 MHz and axial center-
of-mass frequencies v, ranging from 0.39 to 0.6 MHz de-
pending on the number of trapped ions. In this system
Langevin collisions with the residual background gas in
the ultra high vacuum (UHV) apparatus are the main
limitation to ion chain lifetime [12]. These events can
melt the crystal and eject the ions from the trap because
of rf-heating or other mechanisms.

System 2 [13] is a cryogenic ion-trap apparatus based
on a linear blade trap with four segmented gold coated
electrodes. The trap is held at 6.5 K in a closed cy-
cle cryostat, where differential cryo-pumping reduces the
background pressure at low 10~'2 Torr level, which al-
lows for long storage times of large ion chains. For this
reason system 2 has been used to perform the QAOA
with a large number of qubits (Fig. 2b) or when a large

number of measurements was required (Fig. 4). The two
transverse trap frequencies are V%OM = 4.4 MHz and
véom = 4.26 MHz, and the axial frequency ranges from
0.27 to 0.46 MHz.

State preparation

The qubit is initialized by applying resonant 369.5
nm light for about 20 ws to optically pump into the
| J). state. To perform global rotations in the Bloch
sphere, we apply two far-detuned, non-copropagating
Raman beams whose beatnote is tuned to the hyper-
fine splitting vy = 12.642821 GHz of the clock states
281)9|F = 0,mp = 0) and 2S),5|F = 1,mp = 0) en-
coding the qubit [14]. State preparation in our imple-
mentation of the QAOA requires qubit initialization in
the |}). state by optically pumping the ions and then a
global rotation into the |1), state using stimulated Ra-
man transitions. We detect the state of each ion at the
end of each experimental sequence using state-dependent
fluorescence, with single site resolution. In order to im-
prove the accuracy of global qubit rotations, we employ
a composite pulse sequence based on the dynamical de-
coupling BB1 scheme [15]. This allows us to compensate
for inhomogeneity due to the Raman beam’s Gaussian
profile and achieve nearly 99% state preparation fidelity.
The BB1 four pulse sequence is:

_img0 o530 om0 m
U1(7T/2):€ 150] =m0y o =i50; o =170

where after the first /2 rotation e *i% | three addi-
tional rotations are applied: a m-pulse along an angle
0 = cos™1(—1/16) = 93.6°, a 27-pulse along 36, and
another m-pulse along 6. The axes of these additional
rotations are in the xz-y plane of the Bloch sphere with
the specified angle referenced to the z-axis.

Generating the Ising Hamiltonian

We generate spin-spin interactions by employing a spin
dependent force with a pair of non-copropagating 355 nm
Raman beams, with a wavevector difference Ak aligned
along the transverse motional modes of the ion chain.
The two off-resonant Raman beams are controlled us-
ing acousto-optic modulators which generate two inter-
ference beatnotes at frequencies vy + p in the Mglmer-
Sgrensen configuration [16]. In the Lamb-Dicke regime,
the laser-ion interaction gives rise to the effective spin-
spin Hamiltonian in Eq. (1) in the main text, where the
coupling between the i-th and j-th ion is:

bimb;
_ 02 mrym
m

Here Q is the Rabi frequency, vg = hAk? /(872 M) is the
recoil frequency, v, is the frequency of the m-th normal
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Figure S4: System 2 characterization. (a) Sideband resolved spectroscopy of a 32 ion chain with frequencies vgq, =
4.18 MHz and v&oy = 4.06 MHz, with both transverse families identified. Inset: geometrical configuration of the global
Raman beams (blue arrows) with respect to the transverse principal axes of the trap (black arrows). The ellipsoid shows
qualitatively an equipotential surface of the trap. (b) Average spin-spin interaction matrix element J; ;4 as a function of ion
separation r = |¢ — j| for the data taken in Fig. 2c in the main text, calculated with the system parameters directly measured
with sideband spectroscopy, using Eq. (16). The results are normalized to the average nearest-neighbour coupling Jo for each
system size.
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Figure S5: Log-log plot of spin-spin interactions: red points represent the average Ising couplings between spins separated
by distance r = |¢ — j|, calculated from experimental parameters using Eq. 15. These plots show the exact average couplings
and fits corresponding to the N = 12 and N = 20 gradient descent experiments (Fig. 3 in the main text) and the N = 40
exhaustive search experiment (Fig. 2c in the main text). The power law fit (blue dashed curve) fails to match the couplings for
larger spin separations, as does an exponential fit (green dashed curve). The compound formula (Eq. 18) fits well the actual
couplings for all spin separations, even for a chain of 40 ions. The fitted parameters {Jo,a’, 3’} for N = 12, 20, and 40 are
{0.580,0.322,0.229}, {0.517,0.318,0.181}, and {0.369, 0.383,0.134} respectively.

mode, b;,, is the eigenvector matrix element for the i-th
ion’s participation to the m-th normal mode (3}, |bim|? =
> [bim[? = 1) [17], and M is the mass of a single ion.

Differently from system 1, where the wavevector dif-
ference Ak of the Raman beams is aligned along one of
the principal axes of the trap, in system 2 the spin-spin
interaction stems from the off-resonant coupling to both
families of transverse normal modes. Eq. (15) is then
generalized to:

Ty = Jb+ Tz,
T = R Yy (16)
) 2 )~y

m :u2_(y7€1)

where Vf% is the recoil frequency given by the projection of
the Raman wavevector Ak along the two transverse prin-
cipal axes of the trap £ = y, z. We infer an angle 9 ~ 40°

between Ak and the z principal axis (see inset in Fig.
S4a) from the ratio between the resonant spin-phonon
couplings to the two transverse COM modes. Before ev-
ery experiment, we perform Raman sideband cooling on
both the COM and the two nearby tilt modes for both
transverse mode families.

As we scale up the number of qubits (see Fig. 2c in
the main text), we vary the axial confinement in order
to maintain a self-similar functional form of the spin-
spin interaction (see Fig. S4b). For the data in Fig.
2c in the main text, we set the detuning to § = u —
whon = 2m x 45 kHz and the axial frequency to v, =
0.46,0.37,0.36,0.31,0.27 MHz, for N = 20, 25, 30, 35,40
respectively. For the data in Fig. 4 in the main text, the
detuning is §/27 = 45 kHz and the v, = 0.54 MHz.



Fitting Ising Couplings to Analytic Form

By directly measuring trap parameters and spin-
phonon couplings, we can calculate the spin-spin inter-
action matrix J;; with Egs. (15) and (16). However, in
order to efficiently compute the ground state energy of
the Hamiltonian in Eq. (1) (see main text) for N 2 25
using DMRG, we approximate the Ising couplings using
a translational invariant analytic function of the ion sep-
aration r = |i—j|. For N < 20 the spin-spin coupling .J;,
between the two qubits at distance r is well approximated
by a power law decay:

Jij ~ —, (17)

where, as stated in the main text, Jy is the average
nearest-neighbor coupling and « is the power law expo-
nent [18]. However for larger system sizes, this approxi-
mation fails to capture the actual decay of the interaction
matrix.

In order to use the DMRG algorithm to accurately com-
pute the ground state energies, we developed a compound
function to better fit our couplings. This function is a
product of a power law decay and an exponential decay
parametrized by Jy, o’ and ('

Jo _grr—
Jij = e Alr=1) (18)
As seen in Fig. S5, this functional form fits well the exact
Ising couplings even for a chain of 40 ions, while both a
power law and a pure exponential fit diverge significantly.

State Detection

We detect the ion spin state by globally rotating all
the spins into the measurement basis with a composite
BB1 7/2 pulse as described above, to rotate the = or y
basis into the z basis), followed by the scattering of reso-
nant laser radiation on the 281/2\F =1) <—>2P1/2|F =0)
cycling transition (wavelength near 369.5 nm and radia-
tive linewidth /27 ~ 20 MHz). If the atom is projected
in the |1), “bright” state, it fluoresces strongly, while if
projected in the |]), “dark” state it fluoresces almost no
photons because the laser is far from resonance [14].

In both systems the fluorescence of the ion chain is im-
aged onto an Electron Multiplying Charge Coupled De-
vice (EMCCD) camera (Model Andor iXon Ultra 897)
using an imaging objective with 0.4 numerical aperture
and a magnification of 90x for both systems. The fluo-
rescence of each ion covers roughly a 7x7 array of pix-
els on the EMCCD. After collecting the fluorescence for
an integration time of 0.65 (1) ms for system 1 (2), we
use a binary threshold to determine the state of each
ion, discriminating the quantum state of each ion with

near 98% (97%) accuracy in system 1 (2). The residual
2 (3)% errors include off-resonant optical pumping of the
ion between spin states during detection as well as detec-
tor cross-talk between adjacent ions, readout noise, and
background counts.

In system 2 the individual ion range-of-interests (ROIs)
on the camera are updated with periodic diagnostic im-
ages, acquired by applying a nearly resonant cooling laser
for 50 ms so that each ion fluoresces strongly regard-
less of its state. The signal to background noise ratio
in the diagnostic shots is larger than 100, yielding pre-
cise knowledge of the ions’ center locations and taking
into account the slow ~ 2 um pk-pk drift due to thermal
expansion/contraction of the cryostat. Ion separations
range from 1.5 ym to 3.5 pm depending on the trap set-
tings and the distance from the chain center, and are
always much larger than the resolution limit of the imag-
ing system. We utilize the pre-determined ion centers
to process the individual detection shots and optimize
the integration area on the EMCCD camera to collect
each ion’s fluorescence while minimizing cross-talk. We
estimate cross-talk to be dominated by fluorescence from
nearest-neighbor, which can cause a dark ion to be erro-
neously read as bright.

Error sources

The fidelity of the quantum simulation is limited by ex-
perimental noise that causes the system to depart from
the ideal evolution and that can have several sources that
are reviewed below. One important error source is off-
resonant excitation of motional modes of the ion chain,
which causes residual spin motion-entanglement. When
the motion is traced out at the end of the measurement
this results in a finite probability of an unwanted bit-
flip. The probability of this error to occur on the ith ion
[11] is proportional to p; ~ SN (19im€2/6,)%, where

m=1
i = bim /v voont (see Ba. (15)) and 8y, = i — oy, is
the beatnote detuning from the m-th normal mode. We
trade off a lower error for a weaker spin-spin coupling
by choosing a dcom such that (7]<;(31\4Q/5001\/[)2 < 1/10.
By considering the off-resonant contributions of all the
modes (see Fig. S6), we estimate the phonon error to
cause about 1% bit-flip per ion. Additionally, this ef-
fect is amplified by fluctuations in the trap frequency
and laser light intensity at the ions’ location, increasing
the probability of a phonon-assisted bit-flip event. To
take this into account, we included slow drifts and fluc-
tuations of the trap frequency and of the laser power on
the timescale of 500 experimental repetitions assuming
noise spectral density falling as 1/f. Given our typi-
cal trap frequency and laser power fluctuations, we as-
sume a relative standard deviation AQ/Q ~ 2% and
Adcom/Icom ~ 9% over the timescale required to av-
erage over quantum projection noise and we end up esti-
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Figure S6: Errors in trapped-ion quantum simulator: (a) Phonon-assisted bit-flips per ion predicted by evolving the
coherent off-resonant spin-phonon drive for 12 ions. The simulation includes slow drifts of the trap frequency and of the laser
power over 500 shots, each including a Hamiltonian evolution of 0.11 ms, with 6/2r = 45 kHz and /27 = 440 kHz. The
shaded region is defined as the average p; plus and minus one standard deviation (see main text for details). (b) Energy as a
function of the v parameter scan for Fig. 4 in the main text. Taking into account our total bit-flip error budget together with
uncompensated light shift, we explain most of the discrepancy between our experimental performance and the ideal QAOA

energy output.

mating an average bit-flip probability p; ~ 9% (see Fig.
S6a). Moreover laser intensity, beam steering and trap
frequency slow drifts over the time scale of a few hours
required for data-taking cause averaging over different
Ising parameters Jy. In particular, beam steering fluc-
tuations create an imbalance between the red and blue
1y = p beatnotes at the ions, producing an effective B,
noisy field, that has been measured to be as high as 0.3.Jp.
To take into account these drifts, we calculated several
evolutions sampling from a gaussian distribution of val-
ues of B, and Jy, using as a variance the standard devi-
ations (0, = 0.02Jy and op. = 0.3Jp) observed in the
experiment. Another source of bit-flip errors is imper-
fect detection. Off-resonant pumping limits our average
detection fidelity to 98%(97%) for system 1 (2). A de-
tection error is equivalent to a random bit-flip event so
the two errors will sum up. A specific source of noise in
system 2 is mechanical vibrations at 41 Hz and 39 Hz
due to residual mechanical coupling to the cryostat [13].
This is equivalent to phase-noise on the Raman beams,
which leads to dephasing of the qubits. Other less im-
portant noise sources are related to off-resonant Raman
scattering errors during the Ising evolution (estimated in
7-1075 per ion) and RF heating of the transverse COM
motional mode of the ion chain in system 1.

In Fig. S6b, we plot the experimentally measured en-
ergy as a function of v, and the corresponding theoret-
ical curves with and without incorporating errors. Us-
ing the time dependent average bit-flip probability evo-
lution that we estimated from our error model consid-
ering phonons and detection errors and averaging over
slow drifts in experimental parameters Jy and B, we get
a good agreement with the experimental data (see also

Fig. 2c in the main text, where the same parameters have
been used), showing that we have a good understanding
of the noise sources in our system.
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