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Quantum computers and simulators may offer significant advan-
tages over their classical counterparts, providing insights into
quantum many-body systems and possibly improving perfor-
mance for solving exponentially hard problems, such as opti-
mization and satisfiability. Here, we report the implementation
of a low-depth Quantum Approximate Optimization Algorithm
(QAOA) using an analog quantum simulator. We estimate the
ground-state energy of the Transverse Field Ising Model with
long-range interactions with tunable range, and we optimize
the corresponding combinatorial classical problem by sampling
the QAOA output with high-fidelity, single-shot, individual qubit
measurements. We execute the algorithm with both an exhaus-
tive search and closed-loop optimization of the variational param-
eters, approximating the ground-state energy with up to 40
trapped-ion qubits. We benchmark the experiment with boot-
strapping heuristic methods scaling polynomially with the system
size. We observe, in agreement with numerics, that the QAOA
performance does not degrade significantly as we scale up the
system size and that the runtime is approximately independent
from the number of qubits. We finally give a comprehensive anal-
ysis of the errors occurring in our system, a crucial step in the path
forward toward the application of the QAOA to more general
problem instances.

quantum information science | quantum simulation | quantum
computing | quantum algorithms | trapped ions

A promising near-term application of quantum devices is
the production of highly entangled states with metrolog-

ical advantage or with properties of interest for many-body
physics and quantum information processing. One possible
approach to produce useful quantum states is to use quan-
tum devices to perform adiabatic quantum computing (1, 2),
which, in some cases, may provide an advantage over classi-
cal approaches (3). However, adiabatic quantum computing has
stringent adiabaticity requirements that hinder its applicabil-
ity on existing quantum platforms that have finite coherence
times (4).

Alternatively, hybrid quantum–classical variational algorithms
may approximately solve hard problems in realms such as quan-
tum magnetism, quantum chemistry (5), and high-energy physics
(6). This is because the key resource of quantum computers
and simulators is quantum entanglement, which is exactly what
makes these many-body quantum problems hard. In a hybrid
variational algorithm, entangled states are functions of varia-
tional parameters that are iteratively optimized by a classical
algorithm. One example is the Quantum Approximate Optimiza-
tion Algorithm (QAOA) (7), which consists of a “bang-bang”
protocol that can provide approximate answers in a time-efficient
way, using devices with finite coherence times and without the
use of error correction (8–12).

Similarly to adiabatic quantum computing, the QAOA proto-
col encodes the objective function of the optimization problem in
a target spin Hamiltonian. The optimization steps of the QAOA
are based on unitary evolution under the target Hamiltonian
and a noncommuting “mixing” operator. In general, the QAOA
relies on a classical outer loop to optimize the quantum circuit,
aided by physical intuition (13–16) or observed structure of the
variational parameters (11, 17, 18), producing fast, low-depth
circuits for approximate solutions. The QAOA has also been pro-
posed as an efficient way to produce entangled quantum states,
such as the ground states of critical Hamiltonians, which gives
access to their corresponding energies (19, 20).

In this work, we employ a collection of interacting trapped-
ion qubits to experimentally implement a specific instance of
the QAOA, which is native to our quantum hardware. We focus
on both the energy minimization of the quantum Hamiltonian
and the combinatorial optimization of the corresponding
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classical problem. Both problems are encoded in the transverse-
field antiferromagnetic Ising Hamiltonian with long-range inter-
actions:

H =
∑
i<j

Jijσ
x
i σ

x
j︸ ︷︷ ︸

HA

+B
∑
i

σy
i︸ ︷︷ ︸

HB

. [1]

Here, we set the reduced Planck’s constant ~= 1; σγi (γ= x , y , z )
is the Pauli matrix acting on the i th spin along the γ direction
of the Bloch sphere; Jij > 0 is the Ising coupling between spins
i and j , which, in our case, falls off as a power law in the dis-
tance between the spins; and B denotes the transverse magnetic
field. It is well known (21) that the Hamiltonian (Eq. 1) exhibits
a quantum-phase transition for antiferromagnetic interactions
with power-law decay. One of the goals of this work is to find
an approximation of the ground-state energy both at the critical
point (B/J0)c , where J0 is the average nearest-neighbor cou-
pling, and in the case of B = 0, optimizing the QAOA output
for the classical Hamiltonian HA. The realization of the QAOA
entails a series of unitary quantum evolutions (Fig. 1) under the
noncommuting Hamiltonians HA and HB (defined under Eq. 1)
that are applied to a known initial state |ψ0〉. The state obtained
after p layers of the QAOA is:

∣∣∣~β,~γ
〉

=

p∏
k=1

e−iβk (HB/J0)e−iγk (HA/J0) |ψ0〉 , [2]

where the evolution times (or, henceforth, “angles”) βk and
γk are variational parameters used in the k -th QAOA layer to
minimize the final energy E(~β,~γ) =

〈
~β,~γ
∣∣∣H ∣∣∣~β,~γ

〉
.

In order to implement the quantum-optimization algorithm,
each spin in the chain is encoded in the 2S1/2 |F = 0,mF =
0〉≡ |↓〉z and |F = 1,mF = 0〉≡ |↑〉z hyperfine “clock” states of a
171Yb+ ion (SI Appendix). In this work, depending on the num-
ber of qubits and measurements required, we employ two dif-
ferent quantum-simulation apparatus to run the QAOA, which

will herein be referred to as system 1 (22) and system 2 (23) (SI
Appendix). Both systems are based on a linear radiofrequency
Paul trap, where we store chains of up to N = 40 ions and initial-
ize the qubits in the ground state of HB , namely, the product state
|↑↑ · · · ↑〉y ≡ |+〉

⊗N = |ψ0〉, where |↑〉y ≡ (|↑〉z + i |↓〉z )/
√

2, and
B is assumed to be negative. The unitary evolution under HA

is realized by generating spin–spin interactions through spin-
dependent optical dipole forces implemented by an applied
laser field. This gives rise to effective long-range Ising couplings
that fall off approximately as Jij ≈ J0/|i − j |α (24). The power-
law exponent α∼ 1 and the interaction strengths vary in the
range J0/2π= (0.3–0.57) kHz, depending on the system size and
the experimental realization (see SI Appendix for details). The
unitary evolution under HB is generated by applying a global
rotation around the y axis of the Bloch sphere.

After each run of the algorithm, we performed a projective
measurement of each spin in the x (y) basis to measure 〈HA〉
(〈HB 〉) (Fig. 1). Measurements in the x and y bases were car-
ried out by performing a π/2 rotation about the y (x ) axis of
the Bloch sphere, illuminating the ions with resonant laser light,
and collecting the σz

i -dependent fluorescence on a camera with
site-resolved imaging. The energy was calculated by combining
the measurements of the two-body correlators 〈σx

i σ
x
j 〉 and the

total magnetization along the y axis
∑

i〈σ
y
i 〉, where the indices

i , j ranged from one to N . We benchmarked the experimen-
tal outcome E(~β,~γ) with the ground-state Egs of the target
Hamiltonian (Eq. 1), calculated numerically with exact diago-
nalization or Density Matrix Renormalization Group (DMRG)
(25). In order to quantify the performance of the QAOA, we
used the dimensionless quantity

η≡ E(~β,~γ)−Emax

Egs −Emax
, [3]

where Emax is the energy of the highest excited state. This choice
maps the entire many-body spectrum to the [0, 1] interval. In the
following, we show that the best experimental performance η∗ is

Fig. 1. QAOA protocol. The system is initialized along the y direction in the Bloch sphere in the |+〉⊗N state. The unitary evolution under HA(B) is imple-
mented for angles γi(βi) for p times. At the end of the algorithm, global measurements in the x and the y basis are performed to compute the average
energy 〈H〉= E(~β,~γ), which is compared to the theoretical ground-state energy Egs.
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close to the theoretical performance ηth , which itself is less than
unity for a finite number p of QAOA layers.

Quantum Hamiltonian Optimization
We first focused on the p = 1 optimization of the full quantum
problem, where two variational parameters (γ and β) are used
to minimize the energy of the Hamiltonian (Eq. 1). In this case,
the time-evolved one- and two-point correlation functions can
be efficiently computed (26, 27). This leads to a general formula
for the energy expectation under a state produced by the p = 1
QAOA that is used to compute the theoretical performance of
the algorithm (SI Appendix). In Fig. 2A, we show an experimental
exhaustive search over the parameter space {γ,β} and compare
it to the theoretical performance of the algorithm, showing good
agreement for N = 20 qubits. We also compare the performance
of our algorithm as a function of B/J0 with the expected QAOA
performance ηth (Fig. 2B).

As shown in ref. 21, for transverse field greater than the
critical value, the ground state is a low-entanglement param-
agnet, whereas below the critical point, the ground state is an
entangled superposition of antiferromagnetic states. We located
this critical point at |B/J0|= 0.31 for 20 qubits by computing
the half-chain entanglement entropy SL/2 =−Tr(ρL/2 log ρL/2)
of the ground state numerically, where ρL/2 is the half-chain
reduced density matrix. As shown in Fig. 2B, while the exper-
imental performance was η > 94% when |B/J0| is above the
critical point, the gain relative to the initial state |ψ0〉 was mod-
est. On the other hand, below the critical point, the target state
is more entangled, which allows for a larger experimental perfor-

mance gain, at the expense of a reduced absolute performance.
In order to quantitatively assess the gain over the finite initial-
state performance, we introduced a performance natural scale
based on the quantity ση(J0,B ,N )—namely, the SD around the
mean performance achieved implementing a QAOA algorithm
with random angles (see SI Appendix for details). For N = 20 and
B/J0∼−0.3, ση ∼ 2× 10−3. Our experimental performance at
the critical point η∗ is more than 20ση away from the initial state.
On the other hand, the discrepancy between the ideal and exper-
imental performance can be explained by taking into account
our noise sources in the numerics (Fig. 2C and Combinatorial
Optimization).

We investigated the performance of the p = 1 QAOA algo-
rithm as a function of the number of qubits. For each system size,
we ensured that the spin–spin couplings Jij had the same depen-
dence on the qubit distance |i − j | by varying the trap parameters
(SI Appendix). As shown in Fig. 2 D, Inset, the half-chain entan-
glement entropy as a function of system size N exhibited a peak
located at B/J0∼−0.33, displaying the onset of the phase tran-
sition as N tended to infinity. For all system sizes, we optimized
the algorithm by performing a scan of the interaction angle γ
and applying discrete variations of the mixing angle β around the
optimal value predicted by the theory. In Fig. 2D, we compare
the optimal experimental and theoretical performances η for dif-
ferent system sizes from 20 up to 40 qubits for fixed B/J0∼−0.3.
We observed experimentally that the QAOA yielded a similar
performance as a function of number of qubits, even if the algo-
rithm runtime stayed approximately constant as the number of
qubits increased. Numerically, we found that the performance η

A B

C D E

Fig. 2. Exhaustive search for optimal performance. (A) Experimental (Left) and theoretical (Center) performance landscape and their absolute difference
(Right) as a function of the variational parameters β and γ for N = 20 qubits (J0/2π= 0.57 kHz, B/J0∼−0.3), displaying an average absolute difference of
1.9% over 210 different {β, γ} pairs. The optimal performance is η∗ = (93.8± 0.4)%, whereas the theoretical performance is ηth = 96.1%. Each data point
is the result of 1,100 (800) experimental repetitions to measure in the x (y) basis (data taken on system 1). (B) Exhaustive search optimization as a function
of B/J0 (Eq. 1) (data taken on system 1). The dark red solid line is the half-chain entanglement entropy SL/2 computed numerically with DMRG. The dashed
blue line represents the performance of the initial product state |ψ0〉. (C) Comparison between experimental performances and numerics for B/J0=− 0.25
and N = 12 as a function of γ and β∗ = 1.12. Taking into account bit-flip errors and slow drifts in the experimental parameters explains well the discrepancy
between experimental and ideal performance (see SI Appendix for details). (D) The p = 1 QAOA performance as a function of system size N up to 40 qubits
(data taken on system 2). Comparison between QAOA experimental and theoretical performance for B/J0∼−0.3 is shown. Green points show the baseline
performance of the initial state |ψ0〉. (D, Inset) Convergence of the entanglement entropy peak as a function of number of qubits (SI Appendix). (E) p = 2
exhaustive search for N = 20 and B/J0∼−0.3. (E, Left) Every color corresponds to a fine scan of γ2 with a different set of variational parameters β1, β2 and
γ1 (data taken on system 2). (E, Right) The three-dimensional color plot of the performance η, optimized over γ2, as a function of the parameters β1, β2 and
γ1. The best outcome is η∗ = (93.9± 0.3)% (colored red), whereas the theoretical performance is ηth = 98.4% (see Quantum Hamiltonian Optimization for
details). In B–E, the error bars are calculated by using the SD from the mean of the measured performance.

25398 | www.pnas.org/cgi/doi/10.1073/pnas.2006373117 Pagano et al.
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scaled polynomially with N and with the number of layers p (28)
(SI Appendix). Assuming that extrapolation to higher numbers
of qubits holds, this scaling, combined with a polynomial-time
search heuristic, suggests that for any desired energy thresh-
old ε, our approach allows us to approximate the energy to
a degree η > 1− ε in time and number of layers that scale
as poly(N , 1/ε).

We experimentally performed a search for the optimal p = 2
QAOA performance using 20 qubits. Unlike the p = 1 case, there
is no known analytic formula to efficiently compute the energy.
However, exploiting relationships between optimal angles as
a function of increasing p, we used a bootstrapping heuris-
tic (see SI Appendix for details) that allows the experiment to
identify a set of optimal angles faster than a global parameter
search. The bootstrapping heuristic computes a guess for optimal
angles at p given optimal angles at lower p. A local optimizer,
such as the greedy gradient descent described below, is then
needed to take this guess to the true optimum. Our heuristic
method allows us to find variational parameters in time that
scale polynomially with the number of layers and sublinearly
in the number of qubits (when used in conjunction with the
quantum device).

We started from the optimal guess and performed a fine scan
of γ2, while varying γ1,β1 and β2 in larger steps. The result
is shown in Fig. 2D, where we plot the performances η as a
function of γ2 for every set of parameters used in the exper-
iment. Fig. 2D also shows a color plot of all of the optimal
energies found as a function of the other three parameters
γ1,β1, and β2. The p = 2 QAOA performance with 20 qubits
η∗= (93.9± 0.3)% is in agreement with the p = 1 performance
in system 2, taken with the same parameters (Fig. 2C). This
indicates that decoherence and bit-flip errors (SI Appendix)
accumulated during longer evolution times were already balanc-
ing out the 2% expected performance gain of one additional
optimization layer.

As a brute-force approach is inefficient, we implemented a
closed-loop QAOA by interfacing the analog trapped-ion quan-
tum simulator with a greedy gradient-descent algorithm to opti-
mize the measured energy. In the p = 1 QAOA, we can visualize
the optimization trajectory on the theoretical performance sur-
face, as shown in Fig. 3. Starting from a guess (β(0), γ(0)), we
measured the approximate local gradient by performing the
energy measurements in two orthogonal directions β(0) + δβ and
γ(0) + δγ to compute the new guess (β(1), γ(1)), where we mea-
sured the new energy on the quantum simulator. As shown in
Fig. 3, the algorithm converged after about 10 iterations. Com-
pared to an exhaustive search, the gradient descent used fewer
queries to the quantum simulator and was therefore more robust
to slow drifts in the experimental system. For this reason, we

were able to achieve a better performance compared to the
exhaustive search method.

Combinatorial Optimization
We further explored the performance of the trapped-ion system
by investigating the combinatorial optimization of the classi-
cal Hamiltonian HA (Eq. 1 with B = 0) approximately sampling
the output of the p = 1 QAOA, using high-fidelity, single-shot
measurement of all of the qubits. It has been proven, under
reasonable complexity-theoretic assumptions, that no classical
algorithm can efficiently sample exactly from a sufficiently gen-
eral class of p = 1 QAOA circuits (8). Recent results (29, 30)
suggest that this could also hold in the case of approximate sam-
pling (SI Appendix). In this case, by measuring in the x basis,
it is possible to sample the probability distribution of all of the
2N eigenstates |xi〉 of the Hamiltonian HA. We performed the
experiment with 12 qubits so that we could both compute
the expected QAOA theoretical output and also experimen-
tally oversample the Hilbert space of all of the possible 212 =
4,096 possible outcomes. In Fig. 4A, we show on a log scale
the QAOA eigenstates probability distribution using the opti-
mal variational parameters β∗, γ∗ and compare the experimental
eigenstate histogram with the exact diagonalization prediction
of the QAOA output state, sorting the eigenstates according to
their energies.

However, sampling from the full QAOA output distribu-
tion is a daunting task, since the experimental outcome is
extremely sensitive to fluctuations in the Hamiltonian param-
eters and to experimental errors caused by detection and
phonon-assisted bit-flip events and unwanted effective mag-
netic fields along the z direction of the Bloch sphere caused
by uncompensated light shift (see also SI Appendix). Given
our measured experimental parameters, we can calculate the
effect of these errors on the quantum evolution, resulting
in a good agreement with the experimental outcome, as
shown in Fig. 4A.

Another useful way to compare numerics and experimen-
tal data is to implement the coarse-graining procedure of the
Hilbert space proposed in ref. 31. After sorting in decreas-
ing order the observed states according to their experimental
probability, we iteratively grouped the states into “bubbles” of
Hamming distance L around the most probable state, producing
a coarse-grained dataset. We then applied the same coarse-
graining to the theoretical probability distribution and plotted
the comparison in Fig. 4B. In this procedure, the Hamming-
distance radius was varied to ensure that each bubble contained
a comparable number of experimental shots, leading to bubbles
of average Hamming distance L̄= 2.5. In order to quantita-
tively compare the coarse-grained experiment and the theory,

A B

Fig. 3. Gradient descent search for P = 1 QAOA. N = 12 (A) and N = 20 (B). (A, Left and B, Left) Performance η convergence as a function of iterations of the
classical-quantum hybrid algorithm with N = 12 (J0/2π= 0.57 kHz, B/J0 =−0.3) with a measured η∗ = (94.9± 0.2)% (A) and N = 20 qubits (J0/2π= 0.55
kHz, B/J0 =−0.3) with a measured η∗ = (94.7± 0.1)% (B). (A, Right and B, Right) The algorithm trajectory on the theoretical performance landscape
plotted as a function of γ and β. Each energy evaluation takes 4,000 (6,000) shots for 12 (20) qubits. The error bars are SD from the mean of the measured
performance (data taken on system 1).
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Fig. 4. Sampling from p = 1 QAOA. (A) Eigenstate probability histogram for 12 qubits with B = 0. The numerical histogram is computed by decomposing
the ideal QAOA output state on the {|xi〉} basis. We performed 10,800 measurements to oversample the Hilbert space of dimension 2N = 4,096 at the
optimal parameters β∗ = 0.25 and γ∗ = 0.31. The 4,096 eigenstates are grouped in bins of 20 for clarity purposes. The uncertainty bands follow the multi-
nomial distribution SD. Here, J0/2π= 0.33 kHz (see SI Appendix, Noise Sources for details). (B) Histogram of coarse-grained distributions (see Combinatorial
Optimization for details) comparing data, theory, and the uniform distribution. The error bars here also represent the SD of the multinomial distribution.
(C) TVD and Kullback–Leibler divergence as a function of γ, keeping β fixed at the optimal value (1,350 shots per time step). The nonzero TVD value of the
violet curve at γ= 0 is due to state preparation and detection errors, as well as undersampling (SI Appendix). The distance from the uniform distribution
increases as the γ parameter reaches the optimal point γ∗. Dashed lines are the comparison between the ideal QAOA distribution {qi}β∗ ,γ∗ and the uni-
form distribution. The uncertainty bands are based on the aforementioned error in the probability of each state bubble for the experimental distribution,
propagated to the TVD and the DK−L, according to Eq. 4 (data taken on system 2)..

we used two different metrics, namely, the total variation dis-
tance (TVD) and the Kullback–Leibler divergence (DK−L),
defined as:

TVD =
1

2

∑
i

|pi − qi |, [4]

DK−L =−
∑
i

pi log

(
qi
pi

)
, [5]

where pi(qi) is the experimental (theoretical) probability of
observing the i-th outcome. As shown in Fig. 4C, when the sys-
tem is in the initial state, it is closer to a uniform probability
distribution since |ψ0〉 is an equal superposition of all of the
eigenstates of HA. Indeed, at γ= 0, the TVD between the data
{pi} and the uniform distribution is smaller than the one com-
paring the data and the ideal QAOA distribution {qi}β∗,γ∗ . On
the other hand, as the γ parameter was scanned, we observed a
net decrease of both TVD and DK−L between the experiment
{pi} and the QAOA ideal distribution {qi}β∗,γ∗ , in agreement
with the decrease in energy, computed by measuring one- and
two-body correlators.

The variational quantum algorithm reported here, with up to
40 trapped-ion qubits, is the largest ever realized on a quantum
device. We approximated the ground-state energy of a nontriv-
ial quantum Hamiltonian, showing almost constant time scaling
with the system size. Single-shot, high-efficiency qubit measure-

ments in different bases gave access to the full distribution of
bit-strings that is difficult or potentially impossible to model
classically. With the addition of individual control over the inter-
actions between qubits, as well as improvements to fidelity and
system size, the variational quantum-classical hybrid approach
can be employed in this experimental platform to give insight
into quantum chemistry (32–34) and hard optimization problems
(35), such as maximum-satisfiability or exact cover (36), or be
used for the production of highly entangled states of metrological
interest (37).

Data and Code Availability. All study data are included in the article and SI
Appendix.
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