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PERFORMING STATE REVERSAL ON A 
QUANTUM SPIN CHAIN 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

k + 1 
x [ 0001 ] This application claims the benefit of U.S. Provi 

sional Patent Application Ser . No. 63 / 148,662 ( filed Feb. 12 , 
2021 ) , which is herein incorporated by reference in its 
entirety . 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

[ 0002 ] This invention was made with United States Gov 
ernment support from the National Institute of Standards and 
Technology ( NIST ) , an agency of the United States Depart 
ment of Commerce . The Government has certain rights in 
this invention . 

performing state reversal on a quantum spin chain on the 
input state , according to some embodiments . 
[ 0008 ] FIG . 3 shows state reversal operation R ( depicted 
by arrows ) via performing state reversal on a quantum spin 
chain as a time - independent protocol , wherein nearest 
neighbor o couplings ( Jk , red ) and on - site ok fields 
( hte , blue ) are plotted on the y - axis . Sites 0 , N + 1 are ancilla 
qubits that are not part of the protocol and are used for 
analysis , according to some embodiments . 
[ 0009 ] FIG . 4 shows , according to the Example 2 , spectral 
distance mean values with standard deviation ( shaded 
region ) for different protocols under varying strengths of 
noise . We take 100 samples for each data point and use a 
linear fit for a power law A = exp ( N ° 86 ) controlled on the 
protocol , i.e. , fitting log A = a log N + b log d + 0 ( 1 ) , to find 
( standard error ) a = 1.66 ( 0.012 ) and b = 0.994 ( 0.0028 ) for the 
swap - based protocol . The b coefficient changes insignifi 
cantly for time - independent and gate - based protocols , but 
the a coefficient is reduced by 0.31 ( 0.016 ) for gate - based and 
0.23 ( 0.016 ) for time - independent protocols , indicating more 
robust scaling of these protocols in system size , relative to 
a swap - based protocol . 
[ 0010 ] FIG . 5 shows , according to the Comparative 
Example , a time - dependent reversal protocol for N = 2 with 
two edge ancillas . For any bulk state lab > 12 ' ( with edge state 
[ ++ > E ) , alternating oc / 4 evolutions under H2 H are applied a 
total of 2N + 2 times . Each step braids neighboring Jordan 
Wigner Majoranas , wherein the right - movers ( red ) keep the 
same sign while the left - movers ( blue ) gain a minus sign . 
The edge Majoranas Yo , Y , are unchanged for correct parity 
phases , and intermediate Majoranas undergo reversal of 
position with alternating sign . The final state in the bulk of 
the chain is ?ba > 12 

BRIEF DESCRIPTION 

1 

[ 0003 ] Disclosed is a process for performing state reversal 
on a quantum spin chain , the process comprising : providing 
a plurality of qubits that are arranged in a quantum spin 
chain and in an input state , the quantum spin chain of qubits 
comprising an arbitrary number N of the qubits , such that the 
quantum spin chain comprises : a first terminal qubit dis 
posed at a first terminus of the quantum spin chain ; a second 
terminal qubit disposed at a second terminus of the quantum 
spin chain ; and one or more intermediate qubits interposed 
between the first terminal qubit and the second terminal 
qubit along the quantum spin chain , such that : the qubits 
independently comprise a transverse field strength hz ; the 
first terminal qubit comprises a first longitudinal field 
strength J .; the second terminal qubit comprises a second 
longitudinal field strength Jy ; and for each nearest neighbor 
qubit pair , the nearest neighbor qubit pair independently 
comprises an Ising coupling strength Jk , wherein for the 
Ising coupling strength Jk , k is an integer from 1 to N - 1 , and 
N is the total number of qubits ; and evolving the quantum 
spin chain from the input state to a final state for an evolution 
period ty to perform state reversal on the quantum spin 
chain . 

DETAILED DESCRIPTION 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0004 ] The patent or application file contains at least one 
drawing executed in color . Copies of this patent or patent 
application publication with color drawings will be provided 
by the Office upon request and payment of the necessary fee . 
[ 0005 ] The following description cannot be considered 
limiting in any way . Various objectives , features , and advan 
tages of the disclosed subject matter can be more fully 
appreciated with reference to the following detailed descrip 
tion of the disclosed subject matter when considered in 
connection with the following drawings , in which like 
reference numerals identify like elements . 
[ 0006 ] FIG . 1 shows : ( A ) an input state of a quantum spin 
chain for performing state reversal on the quantum spin 
chain and ( B ) a final state of the quantum spin chain after 
performing state reversal on a quantum spin chain on the 
input state , according to some embodiments . 
[ 0007 ] FIG . 2 shows : ( A ) an input state of a quantum spin 
chain for performing state reversal on the quantum spin 
chain and ( B ) a final state of the quantum spin chain after 

[ 0011 ] A detailed description of one or more embodiments 
is presented herein by way of exemplification and not 
limitation . 
[ 0012 ] Quantum information transfer is a fundamental 
operation in quantum physics , and fast , accurate protocols 
for transferring quantum states across a physical system are 
likely to play a key role in the design of quantum computers 
and networks . For example , quantum information transfer 
can be used to establish long - range entanglement and is also 
useful for qubit routing in quantum architectures with lim 
ited connectivity . Conventional work studied implementa 
tion of various information transfer protocols , including 
Hamiltonian dynamics on spin chains , but these either do not 
implement the full state reversal or have deficiencies such as 
slow speed or need for dynamical control . 
[ 0013 ] Information transfer in Hamiltonian systems is 
governed by the spread of entanglement and has close links 
to Lieb - Robinson bounds , entanglement area laws , and 
algorithms for quantum simulation . Fundamental limits to 
the rate of entanglement growth are set by bounds on the 
asymptotic entanglement capacity , and small incremental 
entangling theorems . It is described herein that these limits 
also can be used to obtain lower bounds on an execution 
time of Hamiltonian protocols for information transfer . This 
raises the issue of whether a protocol can achieve optimality 
by saturating the bound . 
[ 0014 ] Quantum state transfer studies involve protocols 
for moving qubits through a spin chain . Some conventional 
technologies involve long - range interactions to speed up 
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protocols . Embodiments described herein involve only near 
est - neighbor interactions . Conventional state transfer proto 
cols assume the intermediate medium to be in a known 
initial state or allow it to change in an unknown or non 
trivial manner . Such protocols are not directly applicable 
when some or all spins in the chain contain data qubits that 
need to be transferred or maintained . Some protocols for 
state reversal , also known as state mirroring , take steps 
towards addressing this issue . State reversal reverses any 
input state on a spin chain about the center of the chain . 
Specifically , with qubit labeling 1 , 2 , ... , N , state reversal 
corresponds to the unitary 

( 1 ) e - HS R : = | SWAPk , N + 1 = k 
k = 1 

( 2005 ) , the disclosure of which is incorporated by reference 
herein in its entirety , that requires dynamical control . Ben 
eficially , the disclosed process for performing state reversal 
on a quantum spin chain takes time that is within a factor 
1.502 ( 1 + 1 / N ) of the shortest time possible . We prove lower 
bounds for performing state reversal on a quantum spin 
chain that hold for all nearest - neighbor qubit protocols with 
arbitrary finite ancilla spaces and local operations and clas 
sical communication . Advantageously , the disclosed process 
for performing state reversal on a quantum spin chain can be 
implemented with an infinite family of nearest - neighbor , 
time - independent Hamiltonians . This includes quantum spin 
chains with nearly uniform coupling . 
[ 0017 ] In an embodiment , with reference to FIG . 1 , FIG . 
2 , and FIG . 3 , performing state reversal on a quantum spin 
chain includes : providing a plurality of qubits 201 that are 
arranged in a quantum spin chain 202 and in an input state 
203 , the quantum spin chain 202 of qubits 201 including an 
arbitrary number N of the qubits 201 , such that the quantum 
spin chain 202 includes : a first terminal qubit 204 disposed 
at a first terminus 205 of the quantum spin chain 202 ; a 
second terminal qubit 206 disposed at a second terminus 207 
of the quantum spin chain 202 ; and one or more intermediate 
qubits 208 interposed between the first terminal qubit 204 
and the second terminal qubit 206 along the quantum spin 
chain 202 , such that : the qubits 201 independently include a 
transverse field strength hzi the first terminal qubit 204 
includes a first longitudinal field strength Jo ; the second 
terminal qubit 206 includes a second longitudinal field 
strength Jr ; and for each nearest neighbor qubit pair 209 , the 
nearest neighbor qubit pair 209 independently includes an 
Ising coupling strength Jk , wherein for the Ising coupling 
strength Jk k is an integer from 1 to N - 1 , and N is the total 
number of qubits 201 ; and evolving the quantum spin chain 
202 from the input state 203 to a final state 210 for an 
evolution period ty to perform state reversal on the quantum 
spin chain 202 . 
[ 0018 ] In an embodiment , performing state reversal on a 
quantum spin chain further includes subjecting the qubits 
201 to a reversal Hamiltonian H. The reversal Hamiltonian 
H can include terms for the first longitudinal field strength 
Jo , the Ising coupling strength J , the second longitudinal 
field strength Jy , and the transverse field strength hk 
[ 0019 ] In an embodiment , the reversal Hamiltonian H 
includes 

up to a global phase , which is independent of the state . State 
reversal is potentially useful for the more general task of qubit routing to apply arbitrary permutations to the qubits . 
Conventional results in this area require the state to be in the 
single - excitation subspace or introduce phases in the final 
state that depend on a non - local property such as the number 
of qubits in state 11 > . The protocol introduces a phase 
( -1 ) M ( M - 1 ) / 2 that is a function of the excitation number M 
( mod 4 ) . This is non - trivial to correct e.g. , in signaling the 
value of the left bit to the right end of a chain with zeros in 
the bulk . A right edge state prepared in I + > is flipped to I- > 
by the phase correction procedure , conditioned on the value 
of the left bit . By the signaling lower bound , one incurs a 
time overhead linear in N to correct these phases and 
implement a reversal for a general state . 
[ 0015 ] The disclosed process for performing state reversal 
on a quantum spin chain described herein includes a time 
independent protocol for state reversal using nearest - neigh 
bor interactions . Advantageously , performing state reversal 
on a quantum spin chain can have application in noisy , 
connectivity - limited quantum devices . The disclosed pro 
cess for performing state reversal on a quantum spin chain 
has an execution time that is nearly optimal , comparable to 
conventional time - dependent protocol . The disclosed pro 
cess has reduced error scaling in system size to noise due to 
static disorder caused by imperfect fabrication when com 
pared to a swap - based protocol . In addition , the disclosed 
process for performing state reversal on a quantum spin 
chain does not require dynamical control but only engi 
neered nearest - neighbor couplings so the disclosed process 
can be more experimentally feasible than conventional 
reversal techniques on quantum systems such as supercon 
ducting qubits where dynamical control could be an addi 
tional source of noise . 
[ 0016 ] Disclosed is a process for performing state reversal 
on a quantum spin chain using a time - independent Hamil 
tonian protocol . State reversal reverses qubit ordering in a 
chain of N spins . The disclosed process for performing state 
reversal on a quantum spin chain includes an easily imple 
mentable nearest - neighbor , transverse - field Ising reversal 
Hamiltonian H with time - independent , non - uniform cou 
plings . Under selected normalization , the disclosed process 
provides state reversal that is three times faster than a naive 
approach using swap gates , in time comparable to the 
protocol presented in Raussendorf , Phys . Rev. A 72 , 052301 

N 

N - 1 N 

H ( ) , h ) = 100+ + look the + Sword - Šmakone INON Jock 
k = 1 

that includes terms for the first longitudinal field strength Jo , 
the Ising coupling strength to where k is an integer from 1 
to N - 1 , the second longitudinal field strength Jy , and the 
transverse field strength hz , where k is an integer from 1 to 
N. In the reversal Hamiltonian H , the Ising coupling 
strengths and longitudinal fields Jk can be Jk = a2k + 1 . The 
transverse field strength hk can be hazk . In the reversal 
Hamiltonian H , az can be provided as 

( N + 1 ) 2 – ( N + 1 - K ) 2 
ak = TE AIN 

a 

where ty : = rV ( N + 1 ) 2 - p ( N ) / 4 and p ( N ) : = N ( mod 2 ) . 
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[ 0020 ] In an embodiment , the Ising coupling strengths and 
longitudinal fields can be 

strength of every two - qubit interaction but allows fast local 
operations . Up to local unitaries , any two - qubit Hamiltonian 
in the canonical form is 

Jkm ) ? 
= 

4 ( 2k + 1 + 4m ) ( 2N + 1 - 2k + 4m ) . 
K : = - Lieky : Kujo ; 00 ; ( 2 ) 

, , z ) 

Here , the transverse field strength hk can be 
him ) = TV k ( N + 1 - k ) . 

9 N 

N 

[ 0021 ] Each qubit 201 can include quantum information 
stored in single - qubit quantum state y . In an embodiment , in 
the input state 203 , the order of the single - qubit quantum 
states w in the qubits 201 along the quantum spin chain 202 
is 419 · Un . In the final state 210 , the order of the 
single - qubit quantum states y in the qubits 201 is reversed 
along the quantum spin chain 202 from the input state 203 
and is Ung ... , 41 as a result of performing state reversal 
on a quantum spin chain . 
[ 0022 ] Exemplary qubits 201 include a superconducting 
qubit , a Rydberg atom , a photon , an ion , an electron , a 
vacancy in a crystalline structure , and the like . The number 
N of qubits 201 in quantum spin chain 202 is arbitrary for 
the disclosed process for performing state reversal on a 
quantum spin chain . It should be appreciated that , regardless 
of the number of qubits 201 , state reversal reverses the input 
state 203 on the quantum spin chain 202 about a central 
intermediate qubit 208 of the quantum spin chain 202 during 
evolution period ty . For example , as shown in FIG . 1 for five 
qubits , state reversal of single - qubit states among qubits 201 
occurs about the central qubit storing quantum information 
in single - qubit state 3. State reversal for an arbitrary 
number of qubits is shown in FIG . 2 and FIG . 3 . 
[ 0023 ] It is contemplated that the quantum spin chain 202 
can be engineered via processes known in the art , including 
creation of qubits on a wafer , e.g , that can include a 
semiconductor , insulator , wiring to the qubits if applicable , 
and the like . Trapped atoms can be configured into a chain 
that can be prepared into the input state 203 and subjected 
to the disclosed process for performing state reversal using 
Rydberg - Rydberg interactions to engineer Ising coupling . 
The final state 210 maintains the set of initial single - qubit 
quantum states y but in a reverse order along the quantum 
spin chain 202. Performing state reversal on a quantum spin 
chain can be implemented in quantum spin chains and 
systems described , e.g. , in U.S. Pat . Nos . 9,270,385 , 8,816 , 
325 , 11,108,398 , and 9,146,441 and U.S. patent application 
Ser . No. 17 / 384,574 , the disclosure of each of which is 
incorporated by reference herein in its entirety . 
[ 0024 ] Advantageously , the disclosed process for per 
forming state reversal on a quantum spin chain consists 
essentially of nearest - neighbor interactions among qubits 
201 in an absence of long - rage interations among qubits 201 . 
Moreover , the disclosed process for performing state rever 
sal on a quantum spin chain uses a time - independent Ham 
iltonian . The execution time of the disclosed process for 
performing state reversal on a quantum spin chain is sub 
stantially optimal . That is , the execution time of the dis 
closed process for performing state reversal on a quantum 
spin chain is within 1.502 ( 1 + 1 / N ) of the shortest possible . 
[ 0025 ] For any nearest - neighbor spin Hamiltonian H , a 
time scale follows from a normalization that limits the 

where txz? zlu_l20 and o ; are the Pauli matrices . The 
normalization condition is || K || == ; lu ; / s1 for all interactions , 
where || : || is the spectral norm . Under this normalization , a 
swap can be optimally implemented in time 31/4 , and the 
disclosed process for performing state reversal on a quantum 
spin chain achieves state reversal in time 

ty : IV ( N + 1 ) 2 - p ( N ) / 4 , ( 3 ) 

where p ( N ) : = N ( mod 2 ) . This is equivalent in time to a swap 
gate circuit of depth -N / 3 . As state reversal using only 
swaps requires depth at least N - 1 , the disclosed process for 
performing state reversal on a quantum spin chain is faster 
than conventional swap - based protocols by an asymptotic 
factor of 3. Certain conventional time - independent Hamil 
tonian protocols that use nearest - neighbor interactions 
implement state transfer in time N./4 or Na / 2 but introduce 
relative phases in the state . Accordingly , the disclosed 
process for performing state reversal on a quantum spin 
chain is faster than these conventional methods for state 
transfer and state reversal except for a subleading term . 
[ 0026 ] It is contemplated that one can lower - bound the 
time for state reversal , which can generate entanglement 
across a bipartition , by using bounds on the asymptotic 
entanglement capacity in a more general model . The asymp 
totic entanglement capacity bounds the rate at which 
entanglement can be generated by any evolution of a given 
bipartite Hamiltonian interspersed with arbitrary local 
operations and classical communication ( LOCC ) and with 
arbitrary finite local ancilla spaces . Herein is provided an 
example of entanglement generated by state reversal and the 
time is lower - bounded using the capacity of a normalized 
two - qubit interaction in canonical form ( 2 ) , even allowing 
for LOCC . Nonetheless , the disclosed process for perform 
ing state reversal on a quantum spin chain nearly saturates 
this bound without classical communication , without ancil 
las , and with only nearest - neighbor interactions throughout 
quantum spin chain 202 . 
[ 0027 ] In the disclosed process for performing state rever 
sal on a quantum spin chain , state reversal is accomplished 
with a Hamiltonian of the form 

H ( J , h ) = 7,0 , ++ x = 1N - 17,0 kok + l + JNO , NENO , ( 4 ) 
where the coefficients J , h are engineered as follows . Letting 

az : = rV ( N + 1 ) 2- ( N + 1 - kyP / ( 4tN ) , ( 5 ) 

for kEN , in an embodiment , the disclosed process for 
performing state reversal on a quantum spin chain is Pro 
tocol 1 ( see also FIG . 3 ) . For Protocol 1 , let Jx = a2k + 1 , h2a2k 
for all sites k , and let H : = H ( J , h ) , and apply U : = e - it to the 
input state . 
[ 0028 ] Accordingly , the disclosed process for performing 
state reversal on a quantum spin chain implements state 
reversal exactly , up to a global phase , which is indicated as 
an equivalence by z . In other words , Theorem 2 applies , 
wherein 

+ 1 
x 

UR Theorem 2 . 
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U ( m ) : = e 
as a 

m a 2 

for all sites k = 1 , ... , N. Let Hm ) = H ( J ( m ) , h ( m ) ) . Apply 
e - iH ( m ) to the input state . 

[ 0037 ] Protocol S3 modifies only the couplings J ( m ) 
function of m , while the field terms h / ( m ) = h , are invariant 
with m . U ( O ) = U , so Protocol 1 is a case of Protocol S3 . For 
convenience , coefficients are rescaled so that the evolution 
time is 1. To prove the correctness of this family of proto 
cols , write the Hamiltonian H ( m ) in terms of Majorana 
fermions obtained by Jordan - Wigner transformation on the 
spin chain ( extended to edge sites { 0 , N + 1 } ) to obtain 

H ( m ) = 1 / 27.A ( m ) .y , ( 8 ) 

where y = [ y Y2 ... Y2N + 2 ] and A ( m ) is a ( 2N + 2 ) x ( 2N + 2 ) 
tridiagonal matrix with entries 

0 JOM ( m ) ( 9 ) 

-JM ) 0 hi 
k Am ) = i -hi 0 Jem ) 

-hn 0 ( m ) 
N 

[ 0029 ] Some conventional time - dependent protocols 
allow the state to evolve alternately under two restrictions of 
the Hamiltonian ( 4 ) : H ( 1,0 ) ( uniform Ising ) and H ( 0,1 ) 
( uniform transverse field ) , each for time 1/4 , for a total of 
N + 1 rounds . In the Majorana picture described below , these 
Hamiltonians carry out a simultaneous braiding of neigh 
boring Majoranas along even ( resp . odd ) edges of the 
doubled Majorana chain . The resulting map matches exactly 
Lemma 3 described below , implying that the disclosed 
process for performing state reversal on a quantum spin 
chain and such conventional time - dependent protocols are 
identical at the level of Majorana operators . Any protocol 
achieving the map in Lemma 3 is guaranteed to implement 
state reversal . 
[ 0030 ] In an embodiment , as further described in Example 
1 , there is an infinite family of nearest - neighbor , time 
independent Hamiltonian protocols for state reversal that 
generalizes Protocol 1. This family is parameterized by a 
non - negative integer m , with modified 06k + 1 coupling 
JK ( m ) & V ( 2N + 1–2k + 4m ) ( 2k + 1 + 4m ) and unmodified o , field 
strength . Protocol 1 corresponds to the special case of m = 0 . 
By choosing large m , the coupling strength can be engi 
neered to be nearly uniform throughout the chain , which 
may be a feature in implementations of the disclosed process 
for performing state reversal on a quantum spin chain . 
[ 0031 ] The disclosed process for performing state reversal 
on a quantum spin chain is more robust to noise than 
conventional techniques . Static disorder could be caused by 
imperfect fabrication of a quantum spin chain or tuning in 
NISQ implementations . With strong disorder and an error 
threshold , e.g. , of 0.03 , a swap protocol can only reverse 4 
sites , whereas the disclosed process for performing state 
reversal on a quantum spin chain can reverse 8 sites . 
[ 0032 ] In general , one would like to know how fast one 
can perform qubit routing on graphs . Qubit routing is a key 
subroutine in quantum architectures with incomplete con 
nectivity and can improve runtimes of general quantum 
algorithms by overcoming limitations imposed by the under 
lying qubit connectivity . Indeed , a constant - factor speedup 
over a swap - based approach is achievable for general qubit 
routing on the chain using the disclosed process for per 
forming state reversal on a quantum spin chain as a primi 
tive . 
[ 0033 ] The articles and processes herein are illustrated 
further by the following Examples , which are non - limiting . 

- ( m ) 
JN 0 

e 

= e 

[ 0038 ] The Heisenberg evolution of the Majoranas under 
Hm is given by yt ) = e2iA ( mity ( 0 ) . Lemma 3 given below ) ( ) 
shows that the operator e2iA ( 0 ) implements reversal . Here we 
show that e2iA ( m ) = e2iA ( 0 ) for all m , which implies that U?m ) 
implements state reversal for all m . Lemma S4 is provided 
on the spectrum of A ( m ) . 
[ 0039 ] Lemma S4 . Let A?m ) be as given in ( 9 ) , and sk : = sgn 
( 2N + 3–2k ) . Then A ( m ) has spectrum 

7 ( 10 ) - EM ) ( 2k – 2N – 3 + 48km ) 

– 
for k = 1 , 2N + 2 . The corresponding eigenvectors Vk 
satisfy Vm = ( - 1 ) N + k = j + 1 / 2Vk ( 2N + 3_j ) . 
[ 0040 ] Proof . Via a transformation of the off - diagonals 
that preserves the spectrum , A ( m ) can be converted to a 
matrix B ( n , a ) of Sylvester - Kac type 

0 1 + a ( 11 ) 
n + a 0 2 

n - 1 O 3 + a TT 

Bín , a ) : 
2 0 n + a 

0 1 + a 

Example 1 
[ 0034 ] Infinite Family of Hamiltonians for State Reversal . 
[ 0035 ] There is an infinite family of XY Hamiltonians that 
can generalize certain protocols . Protocol 1 for performing 
state reversal on a quantum spin chain is a case of an infinite 
family of protocols for performing state reversal on a 
quantum spin chain that is parameterized by a single non 
negative integer m . 
[ 0036 ] According to Protocol S3 for performing state 
reversal on a quantum spin chain , let me Z and 

for n = 2N + 1 , a = 4m . The eigenvalues of B ( n , a ) are given by 
the formula 

> 0 1 + , j 
TT 

= + 2j + 1 + a 

TT ( 6 ) V ( 2k + 1 + 4m ) ( 2N + 1 - 2k + 4m ) = 

hmm ) : = TV k { N + 1 - k ) = ( 7 ) 

for je { 0 , ... , n } , and the first claim follows . 
[ 0041 ] For the second claim , A ( m ) may be converted to a 
real , symmetric , tridiagonal matrix C ( m ) with positive off 
diagonal entries via the similarity transformation C ( m ) : = DA 
( m ) D - 1 where D = diag ( i , i ?, ... i2N + 2 ) . The eigenvectors 
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Uk ; 
u = DVR of Cm ) ( ordered by ascending eigenvalue ) satisfy 
4x = ( - 1 ) * - ' ux ( 2N + 3– ) ) for k = 1 , ... 2N + 2 . Correspondingly , Uk j , the eigenvalues of Am ) satisfy 

Vkj = ( - 1 ) X - 1 ; 2N + 3–23V / 
[ 0042 ] Finally , e2iA ( m ) implements reversal . 
[ 0043 ] Theorem S5 . For all me Z 20 , A ( m ) satisfies [ e2iA 
( m ) ] ; = ( - 1 ) -8 ; ( 2N + 3–1 ) 
[ 0044 ] Proof . Here , 

" k ( 2N + 3 – ; ) = ( - 1 ) ̂ + k = j + 1 / 2 k ( 2N + 3 – j ) . 

by the time of operation and fidelity under perfect imple 
mentation but also resilience to noise . Here , imperfect 
fabrication is modelled as a static noise term on every 
coefficient in the Hamiltonian . We compare our time - inde 
pendent protocol with a swap - based protocol for reversal 
( odd - even sort ) and a gate - based protocol . 
[ 0051 ] Stochastic noise can be modeled as a perturbation 
to the Hamiltonian coefficients . For the case of disorder , we 
draw a single noise term for every coefficient from the 
normal distribution N. We assume that the noise is multi 
plicative so that the noise strength scales proportional to the 
magnitude of the coefficient . The perturbed Hamiltonian H ' 
for our time - independent protocol is 

2N + 2 2N + 2 ( 12 ) 
eli4 ( m ) ezie * " VkV = 2 ( -1 ) - N = 3 / 2vxv 8 - = -N - = 

k = 1 k = 1 

where the trivial phase 2 timsx is dropped . The matrix 
elements of eiA ( m ) are N - 1 N ( 16 ) ? ' = ???? + ????? : - J , ? ' - ???? . ' = M1 + ! + + 

k = 1 k = 1 

2N + 2 ( 13 ) 
[ ezialm ) , = ( -1 ) X - N - 312 ven Vi = 

k = 1 

2N + 2 -iH IN 
= ( -1 ) 2N + 2 + vajVÃ ( 2N + 3 = 1 ) ( 14 ) 

k = 1 

= ( -1 ) -10 ; ( 2N + 3–1 ) , ( 15 ) 

where in the second step , Lemma S4 is used as V ** = ( - 1 ) 
l - k - N – 1 / 2 y , K ( 2N + 3–1 ) . 
[ 0045 ] Therefore , e2iA ' maps Va > ( - 1 ) X - TY2N + 3_k , which 
implies that the protocol U ( m ) implements state reversal for 
all me Z 
[ 0046 ] When normalized so that all two - qubit terms are 
bounded by unity in spectral norm , H ( m ) implements state 
reversal in time 

where J ; = J ; ( 1 + 8J ; ) , h ' = h : ( 1 + 8h ; ) , where dh ; -N ( On ) , J. - N 
( dj ) for specified standard deviations One 8,20 . Evolution 
under this Hamiltonian gives a noisy reversal R ' : = e that 
reduces to R when on = 8 , = 0 . For swap and gate - based 
protocols , we compute an equivalent Hamiltonian formula 
tion and similarly add noise terms . 
[ 0052 ] Ametric for the distinguishability of outputs of two 
quantum channels is the completely bounded trace norm , 
also referred to as the diamond norm . The computation of 
the diamond norm can be efficiently expressed as the solu 
tion to a semidefinite program , making it a somewhat 
non - trivial quantity to compute . We consider unitary noise 
models , where the diamond distance is equivalent to a 
simpler notion of distinguishability , the spectral distance 

A : = || R - R || , ( 17 ) 

> 0 

= 
( N +1 + 4m ) 

4 
where we take the spectral norm of the difference between 
perfect and noisy state reversals R and R ' . In this case , the 
diamond distance is at most two times as large as the spectral 
distance . The distance A can be used to bound another 
common figure of merit , the fidelity 

F ( ? , ? ) = Tr ( ?????? ) , ( 18 ) 

Therefore , the time cost increases linearly in m and is 
minimal for Protocol 1 where m = 0 . 
[ 0047 ] If 4m >> N , the variation in coupling coefficients 
Jm ) is small and on the order 

1 / N +112 

for output states p and o evolved by a perfect and noisy 
reversal , respectively . 
[ 0053 ] To prove a bound on the minimum fidelity for 
completeness , bound by the minimum fidelity over pure 
states as follows : 

2m 

( m ) . 
[ 0048 ] Therefore , the parameter m quantifies a trade - off 
between reversal time and the non - uniformity of JK 
Setting m = N + 1 , for example , yields a variation in the 
couplings on the order of 3 % for any N , and gives reversal 
in time 5N / 4 . 

( 19 ) A2 = || ( R – R ' ) ( R - R ' ) || 
= max ( { 4 } ( R- R ' ) ( R - R ' ) | 4 ) = ( 20 ) 

LV ) 

Example 2 ?? ?? ?? ? - *** - [ 12 ? ? = RR R ) ( 21 ) 
1V ) 

= max ( 2 – 2 Re ( v | RR | 4 ) ( 22 ) 
TV ) 

= 2 – min2Re ( v | R " R | V ) ( 23 ) 

[ 0049 ] Robustness of Performing State Reversal on a 
Quantum Spin Chain . 
[ 0050 ] Protocol 1 and its generalizations are exact , i.e. , 
any input state ly ) maps perfectly to the output Rly ) when 
interaction coefficients are implemented as prescribed . How 
ever , inherent in physical systems is noise , and the useful 
ness of a given state transfer protocol is determined not only 

> 2 – 2min | ( v | R " R * | V ) ; ( 24 ) 
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for any unitary U , Re ylUly ) < 1 , and Re [ z ] < lzl for any ze 
C. Let Fmin denote the worst - case fidelity over all input 
states . By the joint concavity of the fidelity , F , is attained 
for a pure state , thus 

k 
min [ ] + . [ O 

in the chain . First , we map to the doubled chain of Majorana 
fermionic operators by defining 

Y2x : = P ( 0,4-11 0 , * Y2k + 1 : = P ( 0,5-120 , * ( 27 ) 

at each site , where we have used the notation Pla.bi:=1);- " 
( 02 ) for the Jordan - Wigner parity string between sites a 
and b . The Yk are Hermitian and satisfy the Majorana 
anti - commutation relations { Y ;, Yx } = 28jk . We also see that 
0 , * = - iY2kY2k + 1 and 0,60 % k + 1 = iY2k + 1 Y2k + 2 , leading ( 6 ) to take 
the form 

b 
j a 

( 25 ) Fmin minF ( R v ) , elu ) = KAR + R ) k k 1 
? + 1 

Ã = i & k = 1 2N + 1 ' akYkYk + 12 ( 28 ) 

[ 0059 ] The Majoranas Yo Y2N + 3 do not appear in the sum , 
since ag = a2N + 2 = 0 . In the following lemma , we show how ? 
transforms the Majorana operators . Our main technique is an 
analogy with the dynamics of the y component of the spin 
operator for a spin N + 1 / 2 particle . Here , the same analogy 
provides a protocol which gives state reversal on all spins in 
the chain without introducing relative phases . 
[ 0060 ] Lemma 3. The operation ? acts on the Majorana 
operators as 

( 29 ) ÜYO * = { c = { _nx = 
Yk 

( -14 72n + 3 - k 
if k = 0 , 2N +3 , 

otherwise . 

since F ( 10 . ) , 102 ) ) = 1 ( 0216 ) ) | for pure states lo , ) and 102 
) . It follows from ( 24 ) that Fmir 1-1 / 2A2 . 
[ 0054 ] We estimate the spectral distance dependence on 
noise and system size in the three candidate protocols . For 
each protocol , we probe the distance as a function of similar 
on - site and coupling disorder s = dx = dj , and increasing num 
ber of spins N. The spectral distance is computed by exact 
diagonalization , taking time exponential in N , and it is 
possible to probe system sizes up to N = 14 with the resources 
available . At these sizes , we can already see differences 
between the protocols , shown in FIG . 4 . 
[ 0055 ] At each error rate 5 , the swap protocol has the 
worst performance , the time - independent protocol performs 
better , and the gate - based protocol has the best performance . 
We note that the gate - based and time - independent protocols 
perform within a standard deviation of one another , but the 
swap protocol is significantly noisier . For example , at a 
threshold of A < 0.03 , the swap can reverse only up to 4 sites , 
while the time - independent protocol can successfully 
reverse 8 sites . Therefore , the specialized protocols for 
reversal improve upon swap - based protocols not only in 
runtime but also in accuracy . 
[ 0056 ] The relative performance of time - independent and 
gate - based protocols ( including the swap protocol ) may not 
be captured by our simulations . Since the time - independent 
protocol is static , it derives its error primarily from imperfect 
engineering of the coupling strengths and interactions with 
the environment . Gate - based protocols require dynamical 
control , which could be an additional source of noise . 

[ 0061 ] Proof . For the first case , Ñ has no overlap with 
operators Yo and Y2N + 3 , so they are stationary under evolution 
by K. 
[ 0062 ] For the remaining cases , we use the analogy with 
a spin s = N + 1 / 2 particle . The Heisenberg evolution of Yk 
corresponds to the rotation of the S , eigenstate Is , k - s - 1 > of 
magnetization k - s - 1 . Observing that 

( 30 ) ?? 
- ( s , m | Sy | s , m ' ) = ds + m + 1 ( Om ' ( m + 1 ) – Om?m ' +1 ) ) ' 40N 

Example 3 y Z 

[ 0057 ] With regard to a proof and analysis of the protocol 
for performing state reversal on a quantum spin chain , we 
prove correctness of Theorem 2 by mapping the spin chain 
to a doubled chain of Majorana fermions via a Jordan 
Wigner transformation , describing the action in the Majo 
rana picture , and then mapping back to the spin picture . To 
help with the analysis , we extend the chain with two 
ancillary sites { 0 , N + 1 } called the edge , E , and refer to the 
sites { 1 , ... , N } as the bulk , B. We define the transverse field 
Ising model ( TFIM ) Hamiltonian 

A : = ExoMa2x + 10 , * _ * + I- & x = 1 " azo ( 26 ) 

( with h = 1 ) , we can express ( 28 ) in the bilinear form 
X = 1 / 2y Ay , for the vector y : = [ Y1 Y2 ... Y2N + 2 ] and the matrix 
A : = - T / ( 2ty ) , expressed in the S , basis . Using the Majorana 
commutation relations , we have y = i [ Ã , yl = 2iAy , so y ( t ) 
= e2iAfy ( O ) . The Heisenberg evolution of Yk under Ã for time 
ty is exactly analogous to the Schrodinger time evolution of 
the state is , k - s - l > under Sy for time it . A it - rotation under 
Sy maps 

15 , -s + k - 1 > H ( -1 ) X - 115 , s - k + 1 > , ( 31 ) 

and correspondingly , Ya ( ty ) = ( - 1 ) k - 1Y2N + 3 – k? 
[ 0063 ] Note that ( 31 ) can easily be verified for a spin - 1 / 2 
particle . Similarly , a spin - s particle may be viewed as a 
system of 2s spin - 1 / 2 particles with maximal total spin . In this 
picture , a t - rotation under S , corresponds to independent 
It - rotations of each small spin . Since the state Is , k - s - 1 > is 
represented by a permutation - symmetric state with k - 1 up 
spins , the n - rotation maps it to a state with 2s- ( k - 1 ) up spins 
and introduces a phase ( -1 ) for each up spin , which is ( 31 ) . 
[ 0064 ] Due to the signed reversal of the Majoranas in 
Lemma 3 , the parity string Proxy = ib + 1-411 ; -222b + TY ; is ( with 
the exception of Yo ) reflected about the center of the chain 
with an overall phase that exactly cancels when the product 
is reordered by increasing site index . The invariance of the 
edge Majoranas provides a phase factor that cancels the 

N k + 
-k = k 

E : SO 

: a + 1 

on the extended chain that reduces to H when the edge is 
initialized to state I ++ ) . Similarly , we define ? : = e = ity Note 
that the operator Ã ( and hence ? ) acts trivially on I ++ > 
this edge state does not change through the course of the 
evolution . The result also holds using the edge state | -- > E ; 
which is equivalent to negating the sign of the longitudinal 
fields in ( 4 ) . 
[ 0058 ] In the Heisenberg picture , Pauli matrices on site k 
map to the corresponding Pauli on site N + 1 - k for all sites k 
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state - dependent phases when we revert to the spin picture . In 
particular , we have the following lemma . 
[ 0065 ] Lemma 4. The operation ? acts on the parity 
strings as ÕP ( 0.KJ?Trio , ' , N + 1P10.N_k7 for all k . 
[ 0066 ] Proof . Applying Lemma 3 , we have 

X [ - ] 

[ 0072 ] This is tighter than the more general small incre 
mental entangling bound E , c || H || log , d = 2 for the conjec 
tured c = 2 [ 13 ] ( best known c = 4 ) and where the smallest 
dimension of A or B gives d = 2 . Since E is invariant under 
local unitaries , a direct corollary is that 

E0,00 , = E0,00 , = a . 
[ 0073 ] Protocol 1 is close to the shortest time possible . 
[ 0074 ] Theorem 5. It holds that 

2k + 1 ( 32 ) = ÚPLOM O * = * + l ( –138+ ! yo Text Y2N + 3-1 l ) 
= YOP [ 0,0 ] P [ 0 , N - k ] Y2N + 2 

j = 1 

= ( 33 ) 

IN San / 4 < 1.502 . 7 * ( 1 + 1 / N ) where we reordered the product and used P [ N + 1 – k , N ] = P [ 0,1 ] 
P [ O , N - k } From the Majorana anti - commutation relations and 
( 27 ) , the result follows . 
[ 0067 ] Proof of Theorem 2. UER holds iff all bulk observ 
ables on the chain transform identically under U , R. For any 
operator O * supported on bulk site ke { 1 , ... , N } , we show 
that Uo?U * = < HIU O'U +1 ++ > , = 0N + 1 - K Henceforth , drop 
the edge subscript E. By ( 27 ) and Lemmas 3 and 4 , 0 , * is 
mapped to 

+ 1 - 

X 

( 34 ) 2 = Umut = { ++ 1?Pf0.x - 10 + | ++ ) 
= -i < ++ 10 ON + 1 P10,0 + 1 k ] Y2N + 3–2 * l ++ > 
= -10 % + „ N + 1 - ko? + 1- * = oN + 1 = k . 

( 35 ) X 

N + 1 K 
y 

+ 1 - k = = ( 36 ) 

[ 0075 ] Proof . We prove the time lower bound via an upper 
bound on the rate of increase of entanglement across a cut 
in the center of the chain ( allowing differences of one qubit 
for odd N ) . Designate the left half of the cut as subsystem 
A and the right half as subsystem B. Aconsists of subsystem 
A given by the qubit at site [ N / 2 ] adjacent to the cut , and 
subsystem A ' consisting of the remaining qubits to the left of 
the cut as well as a finite but arbitrary number of ancilla 
systems that are not part of the chain . Similarly , B consists 
of subsystem B , the qubit at site [ N / 2H + 1 , and B ' , the 
remaining qubits in the right half with an arbitrary finite 
number of ancilla . 
[ 0076 ] Consider Hamiltonians of the form H ( t ) = K ( t ) + 
K ( t ) , specifying the evolution of the AB system , where K ( t ) 
is a two - qubit Hamiltonian supported on systems AB ( i.e. , 
the cut edge ) , while K contains terms supported on AA ' or 
BB ' but not the cut edge AB . For brevity , we drop the time 
parameter t even though we allow the Hamiltonian to be 
time - dependent . We assume that K is expressed in canonical 
form ( 2 ) due to equivalence under local unitaries . Aside 
from its support , we make no assumptions about the form of 
K ( so the resulting bound is more general than nearest 
neighbor interactions ) . We call H satisfying these conditions 
divisible and also call protocols using divisible Hamilto 
nians divisible . 
[ 0077 ] Observing that Ey is the supremum over a time 
derivative of the von Neumann entropy of p = Trg ( ly > < yl ) , 
we have 

[ 0068 ] Use Lemma 4 to show that ok is mapped to 

( 37 ) 
k - ] UoU * = - ( ++ | ?P10,4–1 * | ++ ) = 

= ( ++ 10oM + Pro , N + 1-410 N + 1 P10 - M - 41 | ++ ) 
ON + 1 = k . 

N + ( 38 ) 
1 - = 0 ( 39 ) 

k 
[ 0069 ] All other observables can be written in terms of the 
onsite Pauli operators Ox " , 02 " , so U is identical to R , up to 
global phase . 
[ 0070 ] Time lower bound follows . 
[ 0071 ] We now prove a lower bound on the optimal time , 
t * , to implement state reversal using normalized local inter 
actions . Let the entanglement entropy between systems A 
and B of a bipartite state ly > AB be E ( ly > ) , defined as the 
local von Neumann entropy S ( p ) : = - Tr ( p log2 P ) , for p = Trb 
( ly > < Y1 ) . Then , the asymptotic entanglement capacity of a 
Hamiltonian H that couples systems A and B is 

( 42 ) 
EH = sup 

dp dlogp 
-logp - p dt dt 

= sup Til ? 
ni ) ? dp 103P ( 43 ) 

= sup dt 

[ 0078 ] The reduced density matrix p has time evolution 
Efe = iH | ) ) - E { | v ) ) -iHt ( 40 ) 

EH = sup lim 
10 t | V ) € H AA ' BB ' dp ( 44 ) = -iTrø ( [ H , YXV ] ) . dt 

' where HAABB is the Hilbert space of the bipartite systems A 
and B with arbitrarily large ancilla spaces A ' and B ' , respec 
tively . In particular , for a Hamiltonian of the form 600x9 

[ 0079 ] We substitute H = K + Eje { x , y , z34,0,00 ; in the com 
mutator and substitute the time - dependence of p into ( 43 ) . 
By linearity of the trace and sublinearity of the supremum , 
we get 

E , Er + je { xy.z3U ; E ; Sa , ( 45 ) 

where we observe that Ex = 0 since K does not have support 
across the cut , and use the normalization condition Ejlu ; l = 1 . 

a : = EoX00x = 2max vy ( 1 - y ) log ( 41 ) 1.912 . < . 
? 1 
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[ 0086 ] Extend the chain with two ancillary sites { 0 , N + 1 } 
that constitute the edge E. The unitary V extends to an 
operator 

V : -1,0 
on the extended chain . The following lemma holds . 
[ 0087 ] Lemma S2 . The operation V acts on the Majorana 
operators as 

- 

This bound holds for all divisible Hamiltonians H , with 
nearest - neighbor Hamiltonians as a special case . 
[ 0080 ] The entanglement generated by any divisible pro 
tocol can now be bounded in time . We observe that if the 
protocol contains local measurements then these cannot 
increase entanglement E ( ly > ) and that feedback may be 
viewed as a particular time - dependence of H conditioned on 
measurement outcomes . Therefore , ( 45 ) bounds the total 
increase in entanglement across bipartition AB over a time 
t * by 

E ( 14 ( ** ) > ) – E ( 17 ( 0 ) > ) sat * ( 46 ) 
( 49 ) Ñ YK DTSY if k = 0 , 2N +3 , 

( -1 ) X - 1 y2N +3 - k otherwise 

1 

for any initial state ly ( 0 ) > acted on by a divisible protocol 
and LOCC . 
Finally , we give an explicit bound on the worst - case time of 
divisible state reversal protocols by specifying an initial 
state . Let the system start in the product state lo > AQIQ > B 
where each qubit forms a Bell state with a local ancilla not 
part of the chain . Clearly , E ( @ > AQIQ > B ) = 0 . We perform a 10 , 
reversal R on the chain and get the state ly > ABER 
( 10 > 10 > B ) , which is maximally entangled , i.e. , E ( Y > AB ) 
= N . Then , ( 46 ) gives the bound 

( with edge state I ++ ) e ) , alternating 7/4 evolutions under Ã2 , 
? , are applied a total of 2N + 2 times . Each step braids 
neighboring Jordan - Wigner Majoranas as indicated by the 
arrows ; the right - movers keep the same sign while the 
left - movers gain a minus sign . The edge Majoranas Yo , Y , are 
unchanged ( a feature that ensures the correct parity phases ) , 
while the intermediate Majoranas undergo reversal of posi 
tion with alternating sign . The final state in the bulk of the 
chain is Iba ) 12 
[ 0088 ] Proof . Use Eq . ( 27 ) to write V as a product of 
alternating 1 / 4 - rotations under two Hamiltonians 

Hj = i k = NY2k + 1Y2k + 2 and 

A 

E ( V ) AB ) – E ( 0 ) 40 | 0B ) N ( 47 ) t * > 
a a = 0 

on any divisible state reversal protocol . Comparing this to 
our protocol time ( 3 ) , we have 

H ) = iLk = NY2kY2k + 12 
[ 0089 ] Since e = 1 / 447 is a braiding unitary that maps Y : - > Y.jo 
Y ; > - Yin Yktij ” Yk , it follows that the operator 2 

IN and ( N + 1 ) 2 - p ( N ) ?? ( 1 + 1 / N ) 
4 

ett 
4N 

braids nearest - neighbor Majoranas along all odd edges of 
the chain , except the first and last edge , while Comparative Example 

eins 
[ 0081 ] Time - Dependent Protocol for Reversal follows . 
[ 0082 ] In this Comparative Example , an analysis of a 
time - dependent protocol for state reversal is provided using 
our methods . Here , we prove that the time - dependent pro 
tocol satisfies Lemma 3. Lemma 4 and Theorem 2 are then 
automatically satisfied . First , re - introduce the protocol using 
our notation . 
[ 0083 ] Protocol si . Let H , : = H ( 0,1 ) and H , : = H ( 1,0 ) , 
where 1 = ( 1 , 1 , ... , 1 ) and 0 = ( 0 , 0 , ... , 0 ) . 
[ 0084 ] Explicitly , 

k 
h + 3 - k ? 

N ( 47 ) H , = ??? , 
k = 1 

braids along the even edges . Therefore , alternating it / 4 
rotations under ? ; and in implement an even - odd sort on 
the chain , as shown in FIG . 5. Accounting for sign changes , 
the Majoranas map as follows : Yk + ( - 1 ) ( + 1Y2N + 3 – k , while Yo , 
Y2N + 3 remain unchanged . 
[ 0090 ] The processes described herein may be embodied 
in , and fully automated via , software code modules executed 
by a computing system that includes one or more general 
purpose computers or processors . The code modules may be 
stored in any type of non - transitory computer - readable 
medium or other computer storage device . Some or all the 
methods may alternatively be embodied in specialized com 
puter hardware . In addition , the components referred to 
herein may be implemented in hardware , software , firm 
ware , or a combination thereof . 
[ 0091 ] Many other variations than those described herein 
will be apparent from this disclosure . For example , depend 
ing on the embodiment , certain acts , events , or functions of 
any of the algorithms described herein can be performed in 
a different sequence , can be added , merged , or left out 
altogether ( e.g. , not all described acts or events are necessary 
for the practice of the algorithms ) . Moreover , in certain 

N - 1 

Hy = X1 + Xxx Xx + 1 + XN , - ( 48 ) 
k = 1 

[ 0085 ] Apply the following unitary to the input state : 

N 1 V : = ( 17 # ežH ) + 1 " ? = 
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embodiments , acts or events can be performed concurrently , 
e.g. , through multi - threaded processing , interrupt process 
ing , or multiple processors or processor cores or on other 
parallel architectures , rather than sequentially . In addition , 
different tasks or processes can be performed by different 
machines and / or computing systems that can function 
together . 
[ 0092 ] Any logical blocks , modules , and algorithm ele 
ments described or used in connection with the embodi 
ments disclosed herein can be implemented as electronic 
hardware , computer software , or combinations of both . To 
clearly illustrate this interchangeability of hardware and 
software , various illustrative components , blocks , modules , 
and elements have been described above generally in terms 
of their functionality . Whether such functionality is imple 
mented as hardware or software depends upon the particular 
application and design constraints imposed on the overall 
system . The described functionality can be implemented in 
varying ways for each particular application , but such imple 
mentation decisions should not be interpreted as causing a 
departure from the scope of the disclosure . 
[ 0093 ] The various illustrative logical blocks and modules 
described or used in connection with the embodiments 
disclosed herein can be implemented or performed by a 
machine , such as a processing unit or processor , a digital 
signal processor ( DSP ) , an application specific integrated 
circuit ( ASIC ) , a field programmable gate array ( FPGA ) or 
other programmable logic device , discrete gate or transistor 
logic , discrete hardware components , or any combination 
thereof designed to perform the functions described herein . 
A processor can be a microprocessor , but in the alternative , 
the processor can be a controller , microcontroller , or state 
machine , combinations of the same , or the like . A processor 
can include electrical circuitry configured to process com 
puter - executable instructions . In another embodiment , a 
processor includes an FPGA or other programmable device 
that performs logic operations without processing computer 
executable instructions . A processor can also be imple 
mented as a combination of computing devices , e.g. , a 
combination of a DSP and a microprocessor , a plurality of 
microprocessors , one or more microprocessors in conjunc 
tion with a DSP core , or any other such configuration . 
Although described herein primarily with respect to digital 
technology , a processor may also include primarily analog 
components . For example , some or all of the signal pro 
cessing algorithms described herein may be implemented in 
analog circuitry or mixed analog and digital circuitry . A 
computing environment can include any type of computer 
system , including , but not limited to , a computer system 
based on a microprocessor , a mainframe computer , a digita 
signal processor , a portable computing device , a device 
controller , or a computational engine within an appliance , to 
name a few . 
[ 0094 ] The elements of a method , process , or algorithm 
described in connection with the embodiments disclosed 
herein can be embodied directly in hardware , in a software 
module stored in one or more memory devices and executed 
by one or more processors , or in a combination of the two . 
A software module can reside in RAM memory , flash 
memory , ROM memory , EPROM memory , EEPROM 
memory , registers , hard disk , a removable disk , a CD - ROM , 
or any other form of non - transitory computer - readable stor 
age medium , media , or physical computer storage known in 
the art . An example storage medium can be coupled to the 

processor such that the processor can read information from , 
and write information to the storage medium . In the alter 
native , the storage medium can be integral to the processor . 
The storage medium can be volatile or nonvolatile . 
[ 0095 ] While one or more embodiments have been shown 
and described , modifications and substitutions may be made 
thereto without departing from the spirit and scope of the 
invention . Accordingly , it is to be understood that the present 
invention has been described by way of illustrations and not 
limitation . Embodiments herein can be used independently 
or can be combined . 
[ 0096 ] All ranges disclosed herein are inclusive of the 
endpoints , and the endpoints are independently combinable 
with each other . The ranges are continuous and thus contain 
every value and subset thereof in the range . Unless other 
wise stated or contextually inapplicable , all percentages , 
when expressing a quantity , are weight percentages . The 
suffix ( s ) as used herein is intended to include both the 
singular and the plural of the term that it modifies , thereby 
including at least one of that term ( e.g. , the colorant ( s ) 
includes at least one colorants ) . Option , optional , or option 
ally means that the subsequently described event or circum 
stance can or cannot occur , and that the description includes 
instances where the event occurs and instances where it does 
not . As used herein , combination is inclusive of blends , 
mixtures , alloys , reaction products , collection of elements , 
and the like . 
[ 0097 ] As used herein , a combination thereof refers to a 
combination comprising at least one of the named constitu 
ents , components , compounds , or elements , optionally 
together with one or more of the same class of constituents , 
components , compounds , or elements . 
[ 0098 ] All references are incorporated herein by reference . 
[ 0099 ] The use of the terms “ a , ” “ an , ” and “ the ” and 
similar referents in the context of describing the invention 
( especially in the context of the following claims ) are to be 
construed to cover both the singular and the plural , unless 
otherwise indicated herein or clearly contradicted by con 
text . It can further be noted that the terms first , second , 
primary , secondary , and the like herein do not denote any 
order , quantity , or importance , but rather are used to distin 
guish one element from another . It will also be understood 
that , although the terms first , second , etc. are , in some 
instances , used herein to describe various elements , these 
elements should not be limited by these terms . For example , 
a first current could be termed a second current , and , 
similarly , a second current could be termed a first current , 
without departing from the scope of the various described 
embodiments . The first current and the second current are 
both currents , but they are not the same condition unless 
explicitly stated as such . 
[ 0100 ] The modifier about used in connection with a 
quantity is inclusive of the stated value and has the meaning 
dictated by the context ( e.g. , it includes the degree of error 
associated with measurement of the particular quantity ) . The 
conjunction or is used to link objects of a list or alternatives 
and is not disjunctive ; rather the elements can be used 
separately or can be combined together under appropriate 
circumstances . 
What is claimed is : 
1. A process for performing state reversal on a quantum 

spin chain , the process comprising : 
providing a plurality of qubits that are arranged in a 

quantum spin chain and in an input state , the quantum 

a 

a 
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VIN + 1 ) 2 – ( N + 1 – ) 2 + 

dx = 4N 

where 

ty : = V ( N + 1 ) 2 – p ( N ) / 4 

and p ( N ) : = N ( mod 2 ) . 
8. The process of claim 4 , wherein , in the reversal 

Hamiltonian H , the Ising coupling strengths and the longi 
tudinal fields Je comprise 

spin chain of qubits comprising an arbitrary number N 
of the qubits , such that the quantum spin chain com 
prises : 
a first terminal qubit disposed at a first terminus of the 
quantum spin chain ; 

a second terminal qubit disposed at a second terminus 
of the quantum spin chain ; and 

one or more intermediate qubits interposed between the 
first terminal qubit and the second terminal qubit 
along the quantum spin chain , such that : 
the qubits independently comprise a transverse field 

strength hki 
the first terminal qubit comprises a first longitudinal 

field strength JO 
the second terminal qubit comprises a second lon 

gitudinal field strength Jn ; and 
for each nearest neighbor qubit pair , the nearest 

neighbor qubit pair independently comprises an 
Ising coupling strength J , wherein for the Ising 
coupling strength Jk , k is an integer from 1 to N - 1 , 
and N is the total number of qubits ; and 

evolving the quantum spin chain from the input state to a 
final state for an evolution period ty to perform state 
reversal on the quantum spin chain . 

2. The process of claim 1 , further comprising subjecting 
the qubits to a reversal Hamiltonian H. 

3. The process of claim 2 , wherein the reversal Hamilto 
nian H comprises terms for the first longitudinal field 
strength Jo , the Ising coupling strength Jk , the second lon 
gitudinal field strength Jn , and the transverse field strength 
ht 

4. The process of claim 3 , wherein the reversal Hamilto 
nian H further comprises 

Jam ) = ( 2k +1 + 4m ) 2N + 1 - 2k + 4m ) . 

( m . 

N N • 

9. The process of claim 5 , wherein , in the reversal 
Hamiltonian H , the transverse field strength ht comprises 

m ) = tVk ( N + 1 - k ) . 
10. The process of claim 1 , wherein state reversal reverses 

the input state on the quantum spin chain about a central 
intermediate qubit of the quantum spin chain during evolu 
tion period ty 

11. The process of claim 10 , wherein each qubit further 
comprises a single - qubit quantum state y . 

12. The process of claim 11 , wherein , in the input state , 
the order of the single - qubit states y in the qubits along the 
quantum spin chain is V1 , ... , Vn . 

13. The process of claim 11 , wherein , in the final state , the 
order of the single - qubit quantum states y in the qubits is 
reversed along the quantum spin chain from the input state 
and is VN , . . . , V1 . 

14. The process of claim 1 , wherein each qubit comprises 
a superconducting qubit , a neutral atom , a photon , an ion , or 
an electron . 

15. The process of claim 1 , wherein the quantum spin 
chain is disposed on a wafer . 

16. The process of claim 1 , wherein the state reversal 
Hamiltonian consists essentially of nearest - neighbor inter 
actions among qubits in an absence of long - rage interations 
among qubits . 

17. The process of claim 1 , wherein the state reversal 
Hamiltonian is time - independent . 

18. The process of claim 1 , wherein the execution time of 
state reversal is substantially optimal . 

19. The process of claim 1 , wherein the execution time of 
state reversal is within 1.502 ( 1 + 1 / N ) of the shortest possible 
time . 

N - 1 N 
k + 1 H ( ) , h ) = 400 * + JUO ** ? + Jno . - home ) ? ' + ????? 4 - ??? - + 

k = 1 k = 1 

? 

N , 

that includes the terms for the first longitudinal field strength 
Jo , the Ising coupling strength Jk the second longitudinal 
field strength Jn , and the transverse field strength hk . 

5. The process of claim 4 , wherein , in the reversal 
Hamiltonian H , the Ising coupling strengths and longitudinal 
fields Je comprise J = a2k + 1 

6. The process of claim 5 , wherein , in the reversal 
Hamiltonian H , the transverse field strength hz comprises 
h = d2k 

7. The process of claim 6 , wherein , in the reversal 
Hamiltonian H , 

k 

2 

* * 


