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Overview of the thesis
➤ Near-term architectures

➤ Ch. 2: When is an architecture “good” for quantum computation?

➤ Ch. 3: Quantum protocols to move qubits over long distances

➤ Ch. 4: Quantum routing: Qubit permutation algorithms

➤ Near-term algorithms

➤ Ch. 5: Control of variational optimization algorithms

➤ Ch. 6: Approximate state preparation on a trapped-ion quantum simulator

➤ Ch. 7: Quantum-inspired optimization
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Fall 2031, QIS 858: Scientific quantum computing
➤ Quantum simulation of QFT:

➤ Representation, gauge symmetries

➤ State preparation

➤ Real-time dynamics

➤ Quantum chemistry and material science: 
➤ Ab initio calculation of chemical energetics

➤ Hard classical optimization: 
➤ Classical problems: Ising spin glasses, MaxCut, 

“QUBO”, etc.

Jordan, Lee, Preskill. Science 336.6085 (2012): 1130-1133.

|ψfree〉 |ψinteracting〉QAO

i j
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NISQ = Noisy, Intermediate-Scale, Quantum

Current capabilities are impressive, but limited. Over the next 5-10 years, quantum 

computers are likely to remain: 

➤ Noisy:  No fault tolerance. No/limited error-correction. 

➤ Size-limited: 100-1000 qubits, low-depth circuits. 

➤ Potentially non-universal: Limited set of feasible operations.

➤ Not fully connected: Restricted qubit connectivities such as chains, grids, modular 

hierarchies, etc.

… but when life gives you lemons, make lemonade!

Preskill, Quantum 2 (2018): 79.
Egan, et al. & Brown, Monroe arXiv:2009.11482 (2020).
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“Quantum lemonade”?
What can shallow-depth, noisy quantum circuits on ~100 qubits do?

Arute et al & Martinis (2019), Nature 574(7779) 505-510.

Sample the output distribution of a 

random, low-depth circuit:

- Quantum computer on 53 qubits: 200 seconds

- Classical supercomputer: 10,000 years!

Aka “quantum supremacy”

Takeaway: NISQ devices can prepare non-trivial quantum states that are beyond the 

scope of realistic classical computation.
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Fall 2031, QIS 858: Scientific quantum computing
➤ Quantum simulation of QFT:
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➤ Ab initio calculation of chemical energetics
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Quantum lemonade: Variational optimization
Goal: Find a state ψ that minimizes a figure of merit E(ψ) approximately.

➤ E(ψ) =〈ψ|H|ψ〉,  H = Hamiltonian (classical cost, neg. ground state projector)

➤ But, n qubits ⇒ 2n-dimensional Hilbert space. Bad news?

Strategy: Search over a smaller set of parameterized states, 

|ψ(θ)〉 = U(θ) |ψ0〉. Measure E(ψ(θ)) on a quantum computer.

Initial guess: 

θ0

Output:

 θ*, ψ(θ*), E*

Classical optimizer:

θ

E(θ)

Quantum device: 
Prepare ψ(θ) and measure E(ψ(θ)) 

E(θ) θ+δθ

Variational principle: 

〈ψ|H|ψ〉≥ E0 
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Two prototypical variational algorithms 

Quantum Adiabatic Optimization (QAO): 
Evolve by H(t) slowly under smooth 
control u(t).  

Quantum Approximate Optimization 
Algorithm (QAOA): Alternate between 
H0, H1 for p rounds. 

Parameters: “Angles” {βi}i=1
p and {γi}i=1

p.

Target Hamiltonian: H1 (e.g.)
Farhi, Goldstone, Gutmann, arXiv:1411.4028 (2014).

Peruzzo, Alberto, et al. Nat. comm. 5 (2014): 4213. (VQE)

Farhi, Goldstone, Gutmann, Sipser, arXiv:quant-ph/0001106 (2000).

Kadowaki, T., & Nishimori, H. (1998). Phys Rev E, 58(5), 5355. (QA)  
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, whereEvolve ,

Goal: Design u(t) such that at final time tf, E = 〈ψ(tf)|H|ψ(tf)〉is minimal.

“Bang-bang” control “Quasistatic” control

QAOQAOA

12



How much does control matter?

➤ QAO: Runtime dominated by smallest gap 
of H(t). Gap can be exponentially small.

⇒ Runtime ~ exp(n).

➤ QAOA: Prepares ground state with unit 
fidelity in 1 round.

⇒ Runtime ~ O(1).

AB and Stephen Jordan. QIC (2019).

Ramp + Spike potentialQ: How large can the separation in 
performance between QAOA and QAO be?

Target Hamiltonian: Permutation-symmetric 
“ramp with a spike”. 

Hamming weight (# of ↑ spins)
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How much does control matter?

➤ QAO: Runtime dominated by smallest gap 
of H(t). Gap can be exponentially small.

⇒ Runtime ~ exp(n).

➤ QAOA: Prepares ground state with unit 
fidelity in 1 round.

⇒ Runtime ~ O(1).
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performance between QAOA and QAO be?

Target Hamiltonian: Permutation-symmetric 
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Locally ramp-like + “the rest”

potential
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QAOA and QAO can be viewed as two limiting cases of a general, 
bang-anneal-bang control, where ‘anneal’ stands for an unspecified time 
dependence. 

where

tf 🠖 0 tf 🠖 ∞

Bang-bang Quasistatic

Bang-anneal-bang

Brady, Baldwin, AB, Kharkov, Gorshkov (2020). arXiv:2003.08952.
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Experimental setup (Monroe Lab @ UMD)

Linear Paul trap: Chain of 171Yb+ ions 
confined (effectively) in all directions.
 

~

Δk

ω

ω + ΔωKim, et al. PRL 103.12 (2009): 120502.
Pagano, et al. QST 4.1 (2018): 014004.

Global Pauli rotations + spin-dependent 
forces to generate two-body terms.
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Budget: Ion chain has a finite lifetime, which limits number of calls to the 

quantum simulator. Brute-force optimization too expensive.

Ground state of the transverse-field Ising model
Pagano, AB, et al. (Jordan, Gorshkov, Monroe), PNAS 117.41 (2020): 25396-25401.

Goal: Approximate the ground state of 

Classical optimizer:

θ

E(θ) E(θ)

θ+δθ
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Optimal angles have structure: {βi}i=1
p and {γi}i=1

p form smooth curves as a function 

of step i. 

Moreover, the curves converge for large N, large p (in fractional step number i/p). 

Observation: Optimal angles vary smoothly 

Left: N = 8, p = 20,21,...30

Right: p = 15, N = 8,9,...16

γi

βi

Pagano, AB, et al. (Jordan, Gorshkov, Monroe), PNAS 117.41 (2020): 25396-25401.
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{βi}i=1
p and {γi}i=1

p form a smooth curve as a function of step i (convergent in p,N).

➤ Start from small N,p. 

➤ Learn the approximate curve. 

➤ Extract an initial guess for larger N,p (via interpolation).

Clever guessing: Bootstrap heuristic

γ(0)
iβ(0)

i

# rounds p

# spins N

Pagano, AB, et al. (Jordan, Gorshkov, Monroe), PNAS 117.41 (2020): 25396-25401.

⇒ Brute force search not necessary! 
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➤ Favorable scaling as p, N → ∞ . For a 

normalized energy  η (1 = perfect), we find 

that η ~ 1 - 1/(pN) for the critical ground 

state.

Results Phase boundary
Pagano, AB, et al. & Jordan, Gorshkov, Monroe, PNAS 117.41 (2020): 25396-25401.

➤ Good performance across phase diagram.

Initial angle bootstrap heuristic + gradient 

descent (p=1,2 and N=12, 20, 40.) 

➤ Ongoing: The theory behind angle curves, 

their connection to annealing. 

Brady, Kocia, Bienias, AB, Kharkov, & Gorshkov, A. V. (2021). arXiv:2107.01218.
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Outlook

➤ The NISQ era is a transitional stage in which physics experiments are “growing 

up” into quantum computers.

➤ It could be a while before we get fault-tolerant, universal quantum computers.

➤ NISQ devices can be powerful.

➤ Good design of algorithms and architectures will be the key to making the most 

of computation in this era (and to figure out how to get to the next era).

➤ Solutions designed to work in NISQ could also apply to the fault-tolerant era. 

(Example: parameterized circuits.)

➤ This is an exciting time to be doing quantum computation! 
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Teaser: Routing

Qubit “routing” on incomplete graphs typically uses SWAP gates but these are:

➤ not always native to architecture,

➤ essentially classical. 

Can we use “quantumness” of the data? Indeed! 

➤ On the n-qubit chain, arbitrary permutations cost at most 2n/3 (vs. n),

➤ The addition of ancilla allows for √n routing time (vs. n),

➤ Using measurement and fast classical feedback, a O(1) routing time (vs. log(n)).

AB, Schoute, Gorshkov, Childs (2020), arXiv:2003.02843.
AB Shoute, King, Shastri, Gorshkov, Childs (2021), arXiv:2103.03264.



Caveats to optimality of bang-bang
The optimality of bang-bang control has caveats:

1. Singular intervals: The optimal value of the control is determined by 

switching function Φ(t), 

When Φ(t) = 0 over a “singular” time interval, the optimal form may not be 

bang-bang there. 

2. Infinite switches (aka Fuller phenomenon), etc.

AB and Stephen Jordan. QIC 19.5-6 (2019): 424-446.
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QUANTUM

CLASSICAL

BANG-BANGQUASISTATIC
The heuristic optimization 

alignment chart

Quantum Approximate Optimization 
Algorithm (QAOA)

Quantum Adiabatic 
Optimization (QAO)

Simulated Annealing (SA) 

Metropolis-Hastings Monte Carlo with 
temperature schedule:

and flipping probability:

Randomized 
descentDiffusion

Bang-bang Simulated Annealing 
(BBSA)

We run MH Monte-Carlo with a 
bang-bang schedule, i.e., only allowing T 
= 0,∞ . 

This corresponds to alternating periods 
of randomized descent and diffusion.



Optimal curves across the phase diagram

Pagano, G, AB, et al. PNAS 117.41 (2020): 25396-25401.



Performance scaling
η: Normalized energy (1 = ground state, 0 = highest excited state). 
|〈ψ|ψ0〉|2: Ground state probability.

From numerics, η ~ 1 - 1/(pN), |〈ψ|ψ0〉|2 ~ p/N

Pagano, G, AB, et al. PNAS 117.41 (2020): 25396-25401.



QAOA across the phase transition
The phase diagram two-dimensional, with parameters α and arctan(J0/B). There 

are two phases, Z-aligned and X-aligned as shown. QAOA performs well at 

criticality. Performance is smooth across the boundary. 

X

Z
|+++...++〉

|↑↓↑...〉 
+|↓↑↓...〉

= arctan (J0/B)

Koffel et al, 1207.3957



Both toy models
Hamming symmetry: c(z) ≡ c(w),  where w = |z| = # of ones in the bit string z

1. Bush of Implications (Bush) 2. Ramp with Spike (Spike)


