Design and Optimization in Near-Term Quantum Computation

> Aniruddha A. Bapat Doctoral Defense University of Maryland, College Park 07.16.2021

Overview of the thesis

- Near-term architectures
 - > Ch. 2: When is an architecture "good" for quantum computation?
 - > Ch. 3: Quantum protocols to move qubits over long distances
 - Ch. 4: Quantum routing: Qubit permutation algorithms
- Near-term algorithms

This talk

- > Ch. 5: Control of variational optimization algorithms
- > Ch. 6: Approximate state preparation on a trapped-ion quantum simulator
- > Ch. 7: Quantum-inspired optimization

List of publications (small = not in thesis)

- > Ch. 2: Unitary entanglement construction in hierarchical networks. *Physical Review A*, 98(6), 062328.
- > Ch. 3: Nearly optimal time-independent reversal of a spin chain. *arXiv preprint arXiv*:2003.02843.
- > Ch. 4: Quantum routing with fast reversals. *arXiv preprint arXiv*:2103.03264.
- Ch. 5: Bang-bang control as a design principle for classical and quantum optimization algorithms.
 Quantum Info. Comput. 19, 5–6 (May 2019), 424–446.
- Ch. 6: Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator. Proceedings of the National Academy of Sciences, 117(41), 25396-25401.
- Ch. 7: Approximate optimization of the MaxCut problem with a local spin algorithm. *Physical Review A* 103, no. 5 (2021): 052413.
- > Entanglement bounds on the performance of quantum computing architectures. *Physical review research*, 2(3), 033316.
- Optimal protocols in quantum annealing and quantum approximate optimization algorithm problems. *Physical Review Letters*, 126(7), 070505.
- > Behavior of Analog Quantum Algorithms." *arXiv preprint arXiv:2107.01218* (2021).

Quantum chemistry and material science:

> Ab initio calculation of chemical energetics

- Hard classical optimization:
 - Classical problems: Ising spin glasses, MaxCut,
 "QUBO", etc.

Fall 2031, QIS 858: Scientific quantum computing

- Quantum simulation of QFT:
 - Representation, gauge symmetries
 - State preparation
 - Real-time dynamics

Jordan, Lee, Preskill. Science 336.6085 (2012): 1130-1133.

$$H = \sum_{ij} A_{ij} a_i^{\dagger} a_j + \sum_{ijkl} B_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l$$

$$\longrightarrow H = -\sum_{i < j} J_{ij} Z_i Z_j$$

NISQ = Noisy, Intermediate-Scale, Quantum

Preskill, *Quantum* 2 (2018): 79. Egan, *et al.* & Brown, Monroe *arXiv*:2009.11482 (2020).

Current capabilities are impressive, but limited. Over the next 5-10 years, quantum computers are likely to remain:

- ► Noisy: No fault tolerance. No/limited error-correction.
- Size-limited: 100-1000 qubits, low-depth circuits.
- Potentially non-universal: Limited set of feasible operations.
- Not fully connected: Restricted qubit connectivities such as chains, grids, modular hierarchies, etc.

... but when life gives you lemons, make lemonade!

"Quantum lemonade"?

What can shallow-depth, noisy quantum circuits on ~100 qubits do?

Sample the output distribution of a random, low-depth circuit:

- Quantum computer on 53 qubits: 200 seconds
- Classical supercomputer: 10,000 years!

Aka "quantum supremacy"

Arute et al & Martinis (2019), Nature 574(7779) 505-510.

Takeaway: NISQ devices can prepare non-trivial quantum states that are beyond the scope of realistic classical computation.

Fall 2031, QIS 858: Scientific quantum computing

Quantum simulation of QFT:

- > Representation, gauge symmetries
- State preparation
- Real-time dynamics
- Quantum chemistry and material science:
 - > Ab initio calculation of chemical energetics

Hard classical optimization:

Classical problems: Ising spin glasses, "QUBO", etc.

and materiateurice: Fall 2031, QIS 858: Scientific quantum computing

- Quantum simulation of QFT:
 - >
 - >
 - **Real-time dynamics** >
- Quantum chemistry and
 - Ab initio calcu >

,ow-energ) cal optimization:

Quantum lemonade: Variational optimization

Goal: Find a state ψ that minimizes a figure of merit $E(\psi)$ approximately.

- > $E(\psi) = \langle \psi | H | \psi \rangle$, H = Hamiltonian (classical cost, neg. ground state projector)
- > But, *n* qubits $\Rightarrow 2^n$ -dimensional Hilbert space. Bad news?

Strategy: Search over a smaller set of parameterized states,

 $|\psi(\theta)\rangle = U(\theta) |\psi_0\rangle$. Measure $E(\psi(\theta))$ on a quantum computer.

Two prototypical variational algorithms

Quantum Approximate Optimization Algorithm (QAOA): Alternate between H_0 , H_1 for p rounds.

Parameters: "Angles" $\{\beta_i\}_{i=1}^p$ and $\{\gamma_i\}_{i=1}^p$.

Target Hamiltonian: H_1 (e.g.)

Quantum Adiabatic Optimization (QAO):

Evolve by *H(t)* slowly under smooth control *u(t)*.

$$H(t) = u(t)H_0 + (1 - u(t))H_1$$

Farhi, Goldstone, Gutmann, *arXiv*:1411.4028 (2014). Peruzzo, Alberto, *et al. Nat. comm.* 5 (2014): 4213. (VQE)

$$|\psi_0\rangle \stackrel{\blacksquare}{=} U = \mathcal{T}e^{-i\int H(t)dt} \stackrel{\blacksquare}{=} |\psi(\theta)\rangle$$

Farhi, Goldstone, Gutmann, Sipser, arXiv:quant-ph/0001106 (2000).

Kadowaki, T., & Nishimori, H. (1998). Phys Rev E, 58(5), 5355. (QA)

Overview of the thesis

- Near-term architecture
 - > Ch 2: When is an architecture "good" for quantum computation?
 - > Ch 3: Quantum protocols to move qubits over long distances
 - Ch 4: Quantum routing: Qubit permutation algorithms
- Near-term algorithms
 - Ch 5: Control of variational optimization algorithms
 - > Ch 6: Approximate state preparation on a trapped-ion quantum simulator
 - Ch 7: Quantum-inspired optimization

Evolve
$$\frac{d}{dt}|\psi
angle = -iH(u(t))|\psi
angle$$
, where $H(t) = u(t)H_0 + (1 - u(t))H_1$,

Goal: Design u(t) such that at final time t_f , $E = \langle \psi(t_f) | H | \psi(t_f) \rangle$ is minimal.

How much does control matter?

AB and Stephen Jordan. QIC (2019).

Q: How large can the separation in performance between QAOA and QAO be?

Target Hamiltonian: Permutation-symmetric "ramp with a spike".

- QAO: Runtime dominated by smallest gap of H(t). Gap can be exponentially small.
 - \Rightarrow Runtime ~ exp(n).
- QAOA: Prepares ground state with unit fidelity in 1 round.
 - \Rightarrow Runtime ~ O(1).

Ramp + Spike potential

$$r(w) = w$$

$$s(w) = \begin{cases} n^{\beta}, & \text{if } w \in [\frac{n}{4} - \frac{n^{\alpha}}{2}, \frac{n}{4} + \frac{n^{\alpha}}{2}] \\ 0, & \text{otherwise.} \end{cases}$$

$$c(w) = r(w) + s(w)$$

$$(w) = r(w) + s(w)$$

$$w_{\text{target}} = \frac{1}{n^{4}} + \frac{1}{n^{2}} +$$

How much does control matter?

AB and Stephen Jordan. QIC (2019).

Q: How large can the separation in performance between QAOA and QAO be?

Target Hamiltonian: Permutation-symmetric "ramp with a spike".

- QAO: Runtime dominated by smallest gap of H(t). Gap can be exponentially small.
 - \Rightarrow Runtime ~ exp(n).
- QAOA: Prepares ground state with unit fidelity in 1 round.
 - \Rightarrow Runtime ~ O(1).

Locally ramp-like + "the rest" potential

c(w) = r(w) + s(w) $\psi_{\rm initial}$ Cost function í targe n/4 n/2 0 n Hamming weight (# of \uparrow spins)

Brady, Baldwin, AB, Kharkov, Gorshkov (2020). arXiv:2003.08952.

QAOA and QAO can be viewed as two limiting cases of a general, bang-anneal-bang control, where 'anneal' stands for an unspecified time dependence.

Overview of the thesis

- Near-term architecture
 - > Ch 2: When is an architecture "good" for quantum computation?
 - > Ch 3: Quantum protocols to move qubits over long distances
 - Ch 4: Quantum routing: Qubit permutation algorithms
- > Near-term algorithms
 - > Ch 5: Control of variational optimization algorithms
 - > Ch 6: Approximate state preparation on a trapped-ion quantum simulator
 - Ch 7: Quantum-inspired optimization

Experimental setup (Monroe Lab @ UMD)

Pagano, et al. QST 4.1 (2018): 014004. Kim, et al. PRL 103.12 (2009): 120502.

Linear Paul trap: Chain of ¹⁷¹Yb⁺ ions confined (effectively) in all directions.

Global Pauli rotations + spin-dependent forces to generate two-body terms.

N = 40

20

Ground state of the transverse-field Ising model

Pagano, AB, et al. (Jordan, Gorshkov, Monroe), PNAS 117.41 (2020): 25396-25401.

Goal: Approximate the ground state of

Budget: Ion chain has a finite lifetime, which limits number of calls to the quantum simulator. Brute-force optimization too expensive.

Observation: Optimal angles vary smoothly

Pagano, **AB**, et al. (Jordan, Gorshkov, Monroe), PNAS 117.41 (2020): 25396-25401.

Optimal angles have structure: $\{\beta_i\}_{i=1}^p$ and $\{\gamma_i\}_{i=1}^p$ form smooth curves as a function of step i.

Moreover, the curves converge for large N, large p (in fractional step number i/p).

Clever guessing: Bootstrap heuristic

Pagano, **AB**, et al. (Jordan, Gorshkov, Monroe), *PNAS* 117.41 (2020): 25396-25401.

 $\{\beta_i\}_{i=1}^p$ and $\{\gamma_i\}_{i=1}^p$ form a smooth curve as a function of step i (convergent in p,N).

- Start from small N,p.
- Learn the approximate curve.
- Extract an initial guess for larger N,p (via interpolation).

Results

Pagano, **AB**, *et al.* & Jordan, Gorshkov, Monroe, *PNAS* 117.41 (2020): 25396-25401. Brady, Kocia, Bienias, **AB**, Kharkov, & Gorshkov, A. V. (2021). *arXiv:2107.01218*.

- Good performance across phase diagram. Initial angle bootstrap heuristic + gradient descent (p=1,2 and N=12, 20, 40.)
- ► Favorable scaling as p, N $\rightarrow \infty$. For a normalized energy η (1 = perfect), we find that $\eta \sim 1 - 1/(pN)$ for the critical ground state.
- Ongoing: The theory behind angle curves, their connection to annealing.

Outlook

- The NISQ era is a transitional stage in which physics experiments are "growing up" into quantum computers.
- It could be a while before we get fault-tolerant, universal quantum computers.
- NISQ devices can be powerful.
- Good design of algorithms and architectures will be the key to making the most of computation in this era (and to figure out how to get to the next era).
- Solutions designed to work in NISQ could also apply to the fault-tolerant era.
 (Example: parameterized circuits.)
- > This is an exciting time to be doing quantum computation!

Thank you!

I thank my collaborators and friends at UMD:

Alexey Gorshkov	Andrew Childs	Arushi Bodas
Stephen Jordan	Zohreh Davoudi	Yidan Wang
Christopher Monroe	Zachary Eldredge	Wen Lin Tan
Guido Pagano & QSim	Jim Garrison	Kaustubh Wagh
Lucas Brady	Eddie Schoute	Jaideep Pathak
Chris Baldwin	Troy Sewell	Sasha Mehan
Przemyslaw Bienias	Indrakshi Raychowdhury	Saikanth Dacha
Abhinav Deshpande	Niklas Mueller	Yogesh Balaji
Yaroslav Kharkov	Dhruv Devulapalli	Naren Manjunath
Lucas Kocia	Minh Tran	Subhayan Sahu
Fangli Liu	Andrew Guo	Papia Bera

(and so many more!)

Teaser: Routing

AB, Schoute, Gorshkov, Childs (2020), *arXiv*:2003.02843. AB Shoute, King, Shastri, Gorshkov, Childs (2021), *arXiv*:2103.03264.

Qubit "routing" on incomplete graphs typically uses SWAP gates but these are:

- not always native to architecture,
- essentially classical.

Can we use "quantumness" of the data? Indeed!

- On the n-qubit chain, arbitrary permutations cost at most 2n/3 (vs. n),
- > The addition of ancilla allows for \sqrt{n} routing time (vs. n),
- Using measurement and fast classical feedback, a O(1) routing time (vs. log(n)).

Caveats to optimality of bang-bang

The optimality of bang-bang control has caveats:

1. Singular intervals: The optimal value of the control is determined by switching function $\Phi(t)$,

$$\Phi(t) = d\mathcal{H}/dt, \quad u^*(t) = \begin{cases} 1, & \text{if } \Phi(t) < 0, \\ 0, & \text{if } \Phi(t) > 0. \end{cases}$$

When $\Phi(t) = 0$ over a "singular" time interval, the optimal form may not be bang-bang there.

2. Infinite switches (aka Fuller phenomenon), etc.

Runtimes

Instance	Annealing-based		Bang-bang		
	QAO	\mathbf{SA}		QAOA	BBSA
Bush, $\lambda \geq 1$	poly(n) 13	$\exp(n)$ 13		O(1)§ 8.3.2	$\tilde{O}(n^{3.5})$ § 8.2.1
Bush, $\lambda < 1$	$\exp(n)$ 13	$\exp(n)$ 13		O(1)§ 8.3.2	$\tilde{O}(n^{3.5})$ § 8.2.1
Spike, $2lpha+eta\leq 1$	poly(n) 14	$\exp(n)$ 13		O(1)§ 8.3.1	O(n)§ 8.2.2
Spike, $2\alpha+\beta>1$	$\exp(n)$ 14	$\exp(n)$ 13		O(1)§ 8.3.1	O(n)§ 8.2.2

The heuristic optimization
alignment chartQUASISTATICBANG-BANGQUANTUMQuantum Adiabatic
Optimization (QAO)Quantum Adiabatic
Optimization (QAO)Quantum Approximate Optimization
Algorithm (QAOA)QUANTUM
$$H_0 = -\sum_{i=1}^n X_i$$
 $H_1 = \sum_{z \in \{0,1\}^n} c(z) |z\rangle \langle z|$ $H_0 = -\sum_{i=1}^n X_i$ $H_1 = \sum_{z \in \{0,1\}^n} c(z) |z\rangle \langle z|$ $|\psi(u = 0)\rangle$ $\frac{quasistatic}{quasistatic}$ $|\psi(u = 1)\rangle$ $H_0 = -\sum_{i=1}^n X_i$ $H_1 = \sum_{z \in \{0,1\}^n} c(z) |z\rangle \langle z|$ $|\psi(u = 0)\rangle$ $\frac{quasistatic}{quasistatic}$ $|\psi(u = 1)\rangle$ $H_0 = -\sum_{i=1}^n X_i$ $H_1 = \sum_{z \in \{0,1\}^n} c(z) |z\rangle \langle z|$ $|\psi(u = 0)\rangle$ $\frac{quasistatic}{quasistatic}$ $|\psi(u = 1)\rangle$ $H_0 = -\sum_{i=1}^n X_i$ $H_1 = \sum_{z \in \{0,1\}^n} c(z) |z\rangle \langle z|$ $|\psi(u = 0)\rangle$ $\frac{quasistatic}{quasistatic}$ $|\psi(u = 1)\rangle$ $H_0 = -\sum_{i=1}^n X_i$ $H_1 = \sum_{z \in \{0,1\}^n} c(z) |z\rangle \langle z|$ $|\psi(u = 0)\rangle$ $\frac{quasistatic}{quasistatic}$ $|\psi(u = 1)\rangle$ $H_0 = -\sum_{i=1}^n X_i$ $H_1 = \sum_{z \in \{0,1\}^n} c(z) |z\rangle \langle z|$ $|\psi(u = 0)\rangle$ $\frac{quasistatic}{quasistatic}$ $|\psi(u = 1)\rangle$ $H_0 = -\sum_{i=1}^n X_i$ $H_1 = \sum_{z \in \{0,1\}^n} c(z) |z\rangle \langle z|$ $|\psi(u = 0)\rangle$ $\frac{quasistatic}{quasistatic}$ $|\psi(u = 1)\rangle$ $H_0 = -\sum_{i=1}^n X_i$ $H_1 = \sum_{z \in \{0,1\}^n} c(z) |z\rangle \langle z|$ $|\psi(u = 0)\rangle$ $\frac{quasistatic}{quasistatic}$ $|\psi(u = 1)\rangle$ $H_0 = -\sum_{i=1}^n X_i$ $H_0 = -\sum_{i=1}^n X_i$ CLASSICAL $\sum_{i=1}^n X_i$ $\sum_{i=1}^n X_i$ $H_0 = -\sum_{i=1}^n X_i$ $H_0 = -\sum_{i=1}^n X_i$ $H_0 = -\sum_{i=1}^n X_i$ $M_0 = 0$ $\sum_{i=1}^n X_i$ $\sum_{i=1}^n X_i$ $H_0 = -\sum_{i=1}^$

Optimal curves across the phase diagram

Performance scaling

η: Normalized energy (1 = ground state, 0 = highest excited state). $|\langle \psi | \psi_0 \rangle|^2$: Ground state probability.

From numerics, $\eta \sim 1 - 1/(pN)$, $|\langle \psi | \psi_0 \rangle|^2 \sim p/N$

Pagano, G, AB, et al. PNAS 117.41 (2020): 25396-25401.

QAOA across the phase transition

The phase diagram two-dimensional, with parameters α and $\arctan(J_0/B)$. There are two phases, Z-aligned and X-aligned as shown. QAOA performs well at criticality. Performance is smooth across the boundary.

Both toy models

Hamming symmetry: $c(z) \equiv c(w)$, where w = |z| = # of ones in the bit string z

1. Bush of Implications (Bush)

$$c(z_0 z_1 \dots z_n) = z_0 + \sum_{i=1}^n z_i (1 - z_0)$$
$$c(z_0, w) = z_0 + w(1 - z_0)$$

2. Ramp with Spike (Spike)

$$r(w) = w, \quad s(w) = \begin{cases} n^{\beta}, \text{ if } w \in [\frac{n}{4} - \frac{n^{\alpha}}{2}, \frac{n}{4} + \frac{n^{\alpha}}{2}] \\ 0, \text{ otherwise.} \end{cases}$$
$$c(w) = r(w) + s(w)$$