
ABSTRACT

Title of Dissertation: DESIGN AND OPTIMIZATION IN
NEAR-TERM QUANTUM COMPUTATION

Aniruddha A. Bapat
Doctor of Philosophy, 2021

Dissertation Directed by: Professor Alexey V. Gorshkov
Department of Physics

Professor Stephen P. Jordan
Department of Physics

Quantum computers have come a long way since conception, and there is still a

long way to go before the dream of universal, fault-tolerant computation is realized. In

the near term, quantum computers will occupy a middle ground that is popularly known

as the “Noisy, Intermediate-Scale Quantum” (or NISQ) regime. The NISQ era represents

a transition in the nature of quantum devices from experimental to computational. There

is significant interest in engineering NISQ devices and NISQ algorithms in a manner that

will guide the development of quantum computation in this regime and into the era of

fault-tolerant quantum computing.

In this thesis, we study two aspects of near-term quantum computation. The

first of these is the design of device architectures, covered in Chapters 2 to 4. We

examine different qubit connectivities on the basis of their graph properties, and present

numerical and analytical results on the speed at which large entangled states can be

created on nearest-neighbor grids and graphs with modular structure. Next, we discuss the

problem of permuting qubits among the nodes of the connectivity graph using only local

operations, also known as routing. Using a fast quantum primitive to reverse the qubits

in a chain, we construct a hybrid, quantum/classical routing algorithm on the chain. We

show via rigorous bounds that this approach is faster than any SWAP-based algorithm for

the same problem.

The second part, which spans Chapters 5 to 7, discusses variational

algorithms, which are a class of algorithms particularly suited to near-term quantum

computation. Two prototypical variational algorithms, quantum adiabatic optimization

(QAO) and quantum approximate optimization algorithm (QAOA), are studied for the

difference in their control strategies. We show that on certain crafted problem instances,

bang-bang control (QAOA) can be as much as exponentially faster than quasistatic

control (QAO). Next, we demonstrate the performance of variational state preparation

on an analog quantum simulator based on trapped ions. We show that using classical

heuristics that exploit structure in the variational parameter landscape, one can find circuit

parameters efficiently in system size as well as circuit depth. In the experiment, we

approximate the ground state of a critical Ising model with long-ranged interactions on

up to 40 spins. Finally, we study the performance of Local Tensor, a classical heuristic

algorithm inspired by QAOA on benchmarking instances of the MaxCut problem, and

suggest physically motivated choices for the algorithm hyperparameters that are found to

perform well empirically. We also show that our implementation of Local Tensor mimics

imaginary-time quantum evolution under the problem Hamiltonian.

DESIGN AND OPTIMIZATION IN
NEAR-TERM QUANTUM COMPUTATION

by

Aniruddha A. Bapat

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2021

Advisory Committee:
Professor Zohreh Davoudi, Chair
Professor Alexey V. Gorshkov, Co-chair/Co-advisor
Professor Stephen P. Jordan, Co-advisor
Professor Christopher Monroe
Professor Andrew M. Childs, Dean’s Representative

© Copyright by
Aniruddha A. Bapat

2021

Acknowledgments

It is impossible to acknowledge everyone in a reasonable amount of space, but I

will try my best. To those who could not be named here, thank you for helping me reach

this important academic milestone.

First and foremost, I thank my advisors, Alexey Gorshkov and Stephen Jordan. It

has been a pleasure to work with both of them, and I feel privileged to have received

the mentorship of two of the finest researchers in the field today. Obviously, this work

could not have been possible without the time and interest they devoted to my academic

development, so, from the bottom of my heart, thank you Stephen and Alexey!

I owe a large part of my research accomplishments to QuICS and the academics

and administrators who make it the world-class hub of quantum computation that it is

today - thank you all! I extend my sincere thanks to Andrew Childs, not only for his

indirect support as QuICS co-director but also for his mentorship and collaboration on

our common projects. Speaking of mentors, I am very grateful to Zohreh Davoudi, who

has been like a third advisor to me the last two years. Thank you, Zohreh! I also thank

Bill Dorland, who kindly agreed to chair my candidacy presentation, and Professor P. S.

Krishnaprasad, who was generous with his time whenever I came to him with questions

on control theory.

This thesis, and indeed, my education, would be incomplete without my colleagues

ii

and collaborators at UMD. In particular, I thank my friend and collaborator on all

things routing, Eddie Schoute. I also thank Lucas Brady, Zachary Eldredge, Abhinav

Deshpande, Jim Garrison, Niklas Mueller, Indrakshi Raychowdhury, Przemyslaw

Bienias, Yaroslav Kharkov, Chris Baldwin, Dhruv Devulapalli, Chris White, Fangli Liu,

Guido Pagano, Wen Lin Tan, and all the members of the QSim lab in the Monroe group.

I also want to thank Chris Monroe himself, who made my collaboration with QSim

possible!

Among my friends, I thank Troy Sewell, a friend, collaborator, office mate, and

partner in speculative banter. I also thank Yidan Wang for her friendship. Additionally, I

want to name a few special groups of friends from during and before the years of graduate

school. I’m not always social, but somehow these excellent people found and adopted me!

So, I thank The Pitty Gang, The Blackfeet, The Lanczos Four, The Founding Fathers of

Catawba, The Core Tex Crew, and The Triple. You know who you are.

My family is always with me, no matter the distance between us (which, on average,

is a lot). My parents made so many sacrifices in their personal life, but never compromised

even an iota when it came to their children. I cannot thank my mother Swatee Bapat

enough. She nurtured me, and what little of her relentless drive stayed with me is what

keeps me afloat today. I thank my sister Asilata Bapat for being brilliant and infecting

me with a bit of that enthusiasm she always had for learning. I could not have asked for

a better role model, singing partner, and sharer of inside jokes. And since I am most like

my father Anand Bapat by nature, I thank him for, well, making me me. Lastly, I thank

my soulmate Arushi Bodas for her kind and loving companionship through the ups and

downs of graduate school. She is telling me to get back to my thesis now.

iii

Table of Contents

Acknowledgements ii

Table of Contents iv

List of Tables vii

List of Figures viii

List of Abbreviations x

Citations to Previously Published Work xi

Chapter 1: Introduction 1
1.1 General remarks . 1
1.2 Quantum architectures . 4

1.2.1 Evaluating a quantum architecture 5
1.2.2 Quantum routing . 6

1.3 Variational Algorithms . 8

Chapter 2: Unitary entanglement construction in hierarchical networks 13
2.1 Introduction . 13
2.2 Hierarchical Products of Graphs . 17

2.2.1 Background and Notation . 17
2.2.2 Hierarchical Product . 20

2.3 Graph Comparisons . 40
2.3.1 Graph Calculations . 43
2.3.2 Choosing Among Graphs . 52

2.4 Entangled State Construction . 58
2.4.1 Setup . 58
2.4.2 Analytical Results for Deterministic Entanglement Generation . . 60
2.4.3 Numerical Results for Probabilistic Entanglement Generation . . . 61

2.5 Circuit Placement on Hierarchies . 64
2.5.1 Partitioning . 67
2.5.2 Rotation . 69
2.5.3 Results . 70

2.6 Conclusions and Outlook . 74

iv

Chapter 3: Nearly optimal time-independent reversal of a spin chain 77
3.1 Proof and analysis of the protocol . 82
3.2 Time lower bound . 86
3.3 Discussion . 90
3.4 Time-dependent protocol for reversal . 92
3.5 Infinite family of Hamiltonians for state reversal 94
3.6 Robustness of the protocol . 97

Chapter 4: Routing using fast reversal 105
4.1 Introduction . 105
4.2 Simple bounds on routing using reversals 108
4.3 An algorithm for sparse permutations . 110

4.3.1 Paths . 110
4.3.2 General graphs . 114

4.4 Algorithms for routing on the path . 119
4.4.1 Worst-case bounds . 122

4.5 Average-case performance . 127
4.6 Conclusion . 130
4.7 Average routing time using only SWAPs 132
4.8 Average routing time using TBS . 135

Chapter 5: Bang-bang control as a design principle for classical and quantum
optimization algorithms 145

5.1 Summary of results . 146
5.2 Preliminaries . 147
5.3 Annealing-based algorithms . 150

5.3.1 Simulated annealing . 150
5.3.2 SA with linear update . 154
5.3.3 QAO . 155

5.4 Bang-bang algorithms . 158
5.4.1 Bang-bang simulated annealing (BBSA) 159
5.4.2 QAOA . 159

5.5 Conditions for optimality of bang-bang control 160
5.6 The problem instances . 162

5.6.1 Bush of implications . 163
5.6.2 Hamming ramp with spike . 164

5.7 Performance . 164
5.7.1 SA and QAO . 165
5.7.2 Bang-bang simulated annealing 166
5.7.3 QAOA . 172

5.8 The control framework . 179
5.9 Bang-bang simulated annealing on the Spike 183
5.10 Proof of Lemma 5.7.1 . 184

v

Chapter 6: Quantum approximate optimization of the long-range Ising model with
a trapped-ion quantum simulator 186

6.1 Quantum Hamiltonian optimization . 190
6.2 Combinatorial optimization . 194

Chapter 7: Approximate optimization of the MaxCut problem with a local spin
algorithm 200

7.1 Spin problems . 202
7.2 Local Tensor framework . 205
7.3 Spin model instances . 207
7.4 LT as a discretized, imaginary-time Schrödinger evolution 210
7.5 Hyperparameter optimization . 214
7.6 Dependence of LT dynamics on the hyperparameters 221

7.6.1 Behavior for a small instance. 222
7.6.2 Dynamics near steady-state. 224
7.6.3 Optimal parameters by instance type. 228

7.7 Comparison with Gurobi . 229
7.8 Comparison with gradient descent . 234
7.9 Discussion . 237

Chapter 8: Conclusion 239
8.1 Open problems . 239
8.2 Perspectives about the future . 241

Appendix A: Appendices to Chapter 6 243
A.1 Quantum Approximate Optimization Algorithm (QAOA) 243

A.1.1 QAOA, p = 1 . 244
A.1.2 QAOA, p > 1 . 245
A.1.3 Convergence in N . 249
A.1.4 Scaling of η in p,N . 251
A.1.5 Characteristic scale for η . 253

A.2 Evidence for hardness of sampling from general QAOA circuits 257
A.2.1 Generalized gap of a function . 258
A.2.2 Approximate sampling hardness 259

A.3 Trapped-ion experimental systems . 260
A.3.1 State preparation . 261
A.3.2 Generating the Ising Hamiltonian 263
A.3.3 Fitting Ising Couplings to Analytic Form 265
A.3.4 State Detection . 266
A.3.5 Error sources . 267

Bibliography 270

vi

List of Tables

2.1 Comparison of topologies by connectivity measure. 37
2.2 Scaling of important graph properties with total number of nodes 43
2.3 Scaling with N of three parameters used in Pareto optimization 56

5.1 Runtime of QAOA, QAO, SA, and BBSA on the Bush and Spike
instances . 147

5.2 Table of abbreviations for the algorithms studied in this chapter. The last
algorithm, BBSA, is introduced in this chapter. 149

7.1 A tabulation of the MaxCut benchmarking instances 209
7.2 A tabulation of the normalized conditional entropy of different performance

predictors . 234

vii

List of Figures

2.1 An example of the hierarchical product 21
2.2 ‘Skinny’ trees vs ‘fat’ trees . 27
2.3 Node addressal in a hierarchical product 28
2.4 A comparison of two modular graphs with the same numbers of nodes

and edges . 35
2.5 The truncated hierarchical product . 37
2.6 Graph comparisons . 40
2.7 Embedding a hierarchy in a lattice . 53
2.8 The Pareto-efficient ‘porcupine’ graph 55
2.9 Simulation of GHZ preparation time for weighted hierarchies 64
2.10 Illustration of dividing a graph into smaller clusters 67
2.11 An illustration of node rotation in the circuit placement algorithm 69
2.12 Numerical performance of circuit placement algorithm 71
2.13 Partition-and-rotate runtime as a function of increasing number of gates

and constant circuit size . 72
2.14 Partition-and-rotate runtime as a function of increasing number of qubits

and constant number of gates . 73

3.1 An illustration of state reversal . 81
3.2 Illustration of the time-dependent reversal protocol 92
3.3 Spectral distance between noisy and noiseless state reversal for varying

noise strengths . 101

4.1 Examples of graphs that admit (a) full, or (b) no speedup in the worst case
using fast reversal . 109

4.2 Example of MiddleExchange (Algorithm 4.3.1) on the path for k = 6. 111
4.3 Illustration of the token tree for routing sparse permutations on a grid . . . 115
4.4 An example of moving tokens in a token tree 117
4.5 Illustration of adjusting the tripartition boundaries to improve worst-case

runtime . 125
4.6 A numerical comparison of average-case routing time on the path 128

5.1 Schematic energy landscapes of the two instances, Spike (left) and
Bush (right). In each diagram, the blue curve indicates the distribution
of the initial state, the equal superposition over all bit strings. 163

5.2 Continuous-time runtime of BBSA on the Bush instance 171

viii

6.1 A QAOA protocol . 189
6.2 Exhaustive search for optimal performance. 197
6.3 Gradient descent search for p=1 QAOA 198
6.4 Sampling from p = 1 QAOA . 199

7.1 Performance of LT as a function of the response, c 215
7.2 Performance of LT as a function of the β parameter 217
7.3 Optimal β as a function of η . 218
7.4 Clustering in the relationship between optimal values of β and η 219
7.5 Displacement between successive rounds as a function of round number . 221
7.6 Evolution of spins for random initial configurations 223
7.7 Steady-state spin configurations as a function of β and η 224
7.8 Energy correlation between unrounded and rounded spin configurations . 225
7.9 Fitting parameter b versus the spectral radius of the coupling matrix . . . 228
7.10 Performance of LT compared against Gurobi for several benchmarking

instances . 231
7.11 Performance of LT and gradient descent across different benchmarking

instances . 236

A.1 Convergence of optimal angle curves with increasing QAOA layers and
number of spins . 245

A.2 A collage of angle sequence curves, arranged by Hamiltonian parameters . 249
A.3 Performance scaling in number of QAOA rounds and number of spins . . 251
A.4 System 2 characterization . 261
A.5 Log-log plot of spin-spin interactions . 263
A.6 Errors in trapped-ion quantum simulator 267

ix

List of Abbreviations

NISQ Noise, Intermediate-Scale, Quantum
QAO Quantum Adiabatic Optimization
QAOA Quantum Approximate Optimization Algorithm
VQE Variational Quantum Eigensolver
QA Quantum Annealing
NP Non-deterministic Polynomial
BQP Bounded-error, Quantum Probabilistic polynomial
IQP Instantaneous Quantum Polynomial
GHZ Greenberger-Horne-Zeilinger
CNOT Controlled NOT
LOCC Local Operators and Classical Communication
TFIM Transverse-Field Ising Model
OES Odd-Even Sort
TBS Tripartite Binary Sort
ATBS Adaptive Tripartite Binary Sort
GDC Generic Divide-and-Conquer
SA Simulated Annealing
BBSA Bang-bang Simulated Annealing
PMP Pontryagin’s Minimum Principle
DMRG Density Matrix Renormalization Group
COM Center Of Mass
KL Kullback-Liebler
LT Local Tensor
LP Linear Programming
QP Quadratic Programming
SDP Semi-Definite Programming
GW Goemans-Williamson

x

Citations to Previously Published Work

Much of this dissertation appeared in papers already published. Here we outline

those publications, with additional citations to related papers whose text does not appear

here.

• Chapter 2: “Unitary entanglement construction in hierarchical networks,” A. Bapat,

Z. Eldredge, J.R. Garrison, A. Desphande, F.T. Chong, A.V. Gorshkov, Phys. Rev.

A 98, 062328. 2018.

– Subsequent work on entanglement construction on networks in the non-

unitary setting can be found in “Entanglement bounds on the performance

of quantum computing architectures” L. Zhou, Z. Eldredge, A. Bapat, J.

Garrison, A. Deshpande, F.T. Chong, A.V. Gorshkov, Phys. Rev. Research

2, 033316, 2020.

• Chapter 3: “Nearly optimal time-independent reversal of a spin chain”, A. Bapat,

E. Schoute, A.V. Gorshkov, A.M. Childs, arXiv:2003.02843.

• Chapter 4: “Quantum routing with fast reversals”, A. Bapat, A.M. Childs, A.V.

Gorshkov, S. King, E. Schoute, H. Shastri, arXiv:2103.03264.

• Chapter 5: “Bang-bang control as a design principle for classical and quantum

optimization algorithms”, A. Bapat, S. P. Jordan, Quantum Inf. Comput. 19.5-6

(2019): 424-446.

– Subsequent work on optimal control of variational algorithms can be found

in “Optimal protocols in quantum annealing and quantum approximate

xi

optimization algorithm problems” L.T. Brady, C.L. Baldwin, A. Bapat, Y.

Kharkov, A.V. Gorshkov, Phys. Rev. Lett.126, 070505, 2021.

– “Behavior of analog quantum algorithms” L.T. Brady, L. Kocia, P. Bienias, A.

Bapat, Y. Kharkov, A.V. Gorshkov, arXiv:2107.01218, 2021.

• Chapter 6: “Quantum approximate optimization of the long-range Ising model with

a trapped-ion quantum simulator”, G. Pagano, A. Bapat, P. Becker, K.S. Collins, A.

De, P.W. Hess, H.B. Kaplan, A. Kyprianidis, W.L. Tan, C.L. Baldwin, L.T. Brady,

A. Deshpande, F. Liu, S.P. Jordan, A.V. Gorshkov, C. Monroe, Proc. Natl. Acad.

Sci., 117 (41) 25396-25401, October 13, 2020.

• Chapter 7: “Approximate optimization of the MaxCut problem with a local spin

algorithm”, A. Bapat, S.P. Jordan, Phys. Rev. A 103 (5), 052413, 2021.

xii

Chapter 1: Introduction

1.1 General remarks

Since its conception four decades ago [1–3], quantum computation has progressed

from infancy in the form of few-qubit quantum computers to an adolescent stage that

John Preskill dubbed the “Noisy, Intermediate-Scale Quantum”, or NISQ, era [4]. Like

adolescence, this is a time filled with unprecedented growth and a combination of

uncertainty and excitement about the future. Since device capabilities are still limited

by noise as well as the number of qubits, a fundamental goal in this era is to construct

well-designed device architectures and algorithms that deliver the “biggest bang for the

buck”. In this thesis, we study several problems motivated by this maxim.

Before giving a technical overview of the thesis, let us understand the nature of

quantum computation in the near-term. In the last decade, practical quantum computation

has made rapid progress. Small quantum computers, i.e., devices on 1-10 physical

qubits, have now been engineered with an impressive degree of control on a range of

platforms. However, it would be more accurate to describe systems at this scale as

physics experiments than as computers. The ultimate goal of quantum computation is

the universal, fault-tolerant quantum computer, which can run arbitrary quantum circuits

with an error that can be made arbitrarily small via efficient quantum error correction

1

procedures. The majority of proposals for fault-tolerance involve the use of the logical

qubit, which is a redundant composite of several physical qubits. Depending on the error-

correction scheme and the algorithm to be implemented, the cost of engineering logical

qubits and fault-tolerant logical operations on them could be beyond thousands of physical

qubits per logical qubit. For example, Ref. [5] estimates that using the surface code, it

could take about 46 million superconducting qubits to factorize a 1024-bit number using

Shor’s algorithm. This is well beyond the capabilities of near-term quantum computing

platforms.

Pushing the technological envelope a little closer towards that end goal, NISQ

computers are pre-fault-tolerant machines operating on the scale of 10-1000 qubits. As

such, they are noisy and support circuits of limited size, but at 100 qubits, the computation

is already too expensive to be directly represented on a classical computer due to an

exponential blowup in the Hilbert space dimension. This puts the NISQ regime in

an interesting middle ground where it is plausible that there are useful, non-classical

computational problems to be solved, but it is less clear how to solve them within

the NISQ constraints. There are many challenges to be overcome at once: Which

problems are promising? Which physical platforms are most scalable in, e.g., “quantum

volume” [6]? What is the optimal qubit connectivity? How to mitigate the effects of

noise? And so on.

In NISQ architectures, a major design constraint is the allowed connectivity

between qubits. This is evident when one looks at current NISQ platforms such as

trapped ions or superconducting qubits. A single ion trap consists of multiple ions (i.e.,

the physical qubits) physically confined and interacting via phonon modes in the trap.

2

Since any two-qubit gate can be performed via the appropriate combination of phonon

excitations, every qubit is connected to every other qubit. However, the control required

to achieve full connectivity does not scale well with the number of trapped ions, capping

out at the scale of about 100 ions [7, 8]. A more scalable solution to this issue is to

connect multiple ion traps (or modules) via a photonic network that only connects to one

designated “communicator” qubit per trap. Superconducting qubit systems opt for grid-

like geometries due to the engineering constraints present in such systems [9]. Therefore,

one trades qubit connectivity for scalability. Even when all-to-all connectivity is possible,

it could prove more feasible to divide the system into distinct units, much the way a

traditional architecture separates CPU and RAM.

Another hallmark of the NISQ era is that the architecture and the algorithms depend

on each other. In contrast, on a hypothetical universal quantum computer, we expect

the underlying device architecture to become an irrelevant concern to algorithm design.

There are three primary features of NISQ devices that constrain NISQ algorithms: lack

of fault tolerance, intermediate size, and non-universality. Non-fault-tolerance implies

that NISQ algorithms must be shallow-depth. While error mitigation (e.g.,Refs. [10, 11])

can improve the quality of output, qubit coherence times still set a limit on the runtime.

Secondly, intermediate size implies that NISQ algorithms must target problems that lie

outside the realm of classical computation at relatively modest input size. This has

motivated the search for quantum supremacy, which is the demonstration of a quantum

algorithm for a task that is beyond realistic classical capabilities. And while this milestone

has recently been crossed on the problem of sampling the output distribution of a pseudo-

random, constant-depth circuit on 53 qubits [12], it is hard to make the case for the

3

applicability of such an algorithm. Lastly, non-universality may constrain the set of

operations that can be feasibly performed, which further restricts the scope of NISQ

algorithms. Therefore, to design solutions that fit within these tight constraints demands

a creativity that is not unlike writing poetry!

Now we introduce the themes central to this thesis.

1.2 Quantum architectures

In the context of computing, the word ‘architecture’ refers to the organization of

individual informational units (bits or qubits) into progressively more abstract logical

structures. For example, 8 bits together form a register that can hold data such as an

integer with value less than 256 = 28. Several registers may be organized together

into memory buffers, logic units, etc., which then organize to form a memory chip,

or a processor. Finally, several CPUs may be connected to form a computing cluster.

Since quantum information is fundamentally different from classical information, the

architecture of quantum computers will necessarily look different. A great example of

this is the concept of quantum random access memory, or QRAM [13], which, while

analogous to the (classical) RAM, is unique to the quantum paradigm in that it can be

queried in superposition the way one would query a quantum oracle. In time, quantum

architectures will grow in complexity as layers of abstraction are added one at a time.

Currently, however, there are more fundamental challenges in our understanding of qubit

connectivity in quantum devices. We address some of these questions in the thesis.

For the remainder of this discussion, we shall express a qubit architecture by its

4

essential details, namely, as a graph where the nodes are the qubits, and the edges connect

pairs of qubits whenever it is possible to address them via two-qubit interactions.

1.2.1 Evaluating a quantum architecture

Let us start with the following question. GivenN qubits, what is the optimal way to

connect them? Given no additional information, the answer is clear: the complete graph,

KN . This way, a gate is implementable on any two qubits, implying that circuits can be

mapped to this architecture with trivial overhead.

However, as we have seen with the examples of ion traps, complete connectivity

may not be scalable in N due to engineering constraints. Therefore, it is natural to assign

a cost to adding connections, or to set hard constraints on the number of edges allowed as

a function of the number of qubits. Suppose the number of edges is required to be linear

in N ; what is the optimal connectivity then? In that case, it is less clear how to choose

decisively from the undoubtedly vast set of valid graphs.

To begin to answer such questions, one can look to the field of graph theory, which

has a rich history that spans many disciplines. Whether it is the layout of telephone

lines, the structure of social networks or the connectivity of qubits, properties about the

underlying graph structure can provide a language to compare seemingly incomparable

graphs.

In Chapter 2, we use a graph-theoretic approach to argue about the efficacy of

several different architectures for quantum applications. We analyze how the graphs

perform under the benchmark of the time taken to prepare the globally entangled GHZ

5

state, 1√
2
|00 . . . 0〉+ 1√

2
|11 . . . 1〉, via local unitary operations. We also design heuristics

for circuit mapping on modular graphs. This work is based on Refs. [14].

1.2.2 Quantum routing

Quantum algorithms are not always designed with architectural constraints in mind.

Therefore, there arises an inevitable problem of mapping an algorithm to a restricted

architecture. To illustrate this point, consider an N × N grid of qubits. An arbitrary

quantum algorithm will involve gates on distant qubits. To implement such a gate, it is

necessary to first move the distant qubits so that they become neighbors. In one layer of

a circuit, there could be as many as O(N2) two-qubit gates, each acting on qubits that

are a distance O(N) apart. If one performed each gate serially, it would take time O(N3)

to implement one circuit layer. In actuality, it takes only a O(N)-depth SWAP circuit to

implement any permutation on the grid [15]. Such polynomial improvements could be the

difference between a prohibitive circuit and a NISQ-implementable circuit. Therefore, it

is essential to solve the quantum routing problem, which is the problem of implementing

permutations on a qubit graph using local operations.

In a model of routing involving data of unspecified type, the operations are restricted

to neighboring packet swaps. But since we are interested specifically in the routing of

qubits, it is natural to consider the possibility of speedups to routing given access to local

quantum operations. In fact, there is already evidence for such speedups. It is known

that using engineered Hamiltonians, one can swap the states of two qubits in an N -qubit

system polynomially faster than the distance between the qubits [16]. Similarly, it is

6

possible to teleport quantum data across long distances essentially instantaneously via

entanglement swapping [17]. With the addition of such tools, it is plausible that quantum

algorithms for routing could be much faster than a simple, SWAP-based approach.

However, while the tools above are directly applicable to the swapping of two qubits,

the routing problem is more general, and therefore more challenging. This is because

1. we demand no dependence on the initial state,

2. the goal is to implement any permutation, not just a special long-distance swap, and

3. we wish to design routing algorithms on a variety of graph geometries, not just a

chain or a grid.

In Chapter 3, we show that using a time-independent Hamiltonian, it is possible to

carry out a reversal of a spin chain faster than any SWAP-based protocol. The reversal is

a special permutation that swaps qubits about the center of the chain. This work is based

on Refs. [18].

Then, in Chapter 4, we construct algorithms that use the fast reversal as a quantum

primitive to carry out faster-than-SWAP routing of any permutation on the chain. We

provide rigorous bounds on the runtime of our routing algorithms, and also analyze their

average-case runtime. This work is based on Ref. [19].

Note that one can think of the above approach as a hybrid quantum/classical

scheme. It could be quite challenging (or even impossible) to design a family of faster-

than-classical circuits for every input permutation on a given graph. A more expedient

approach is to generate general permutations by composing a sequence of known quantum

protocols for special permutations. The task of finding the correct sequence for a given

7

permutation is non-trivial and may require sophisticated classical algorithms. Therefore,

one can imagine a system where fast quantum protocols are discovered and fed into a

classical apparatus for finding new, faster ways to implement routing.

In the next section, the hybrid approach will make a reappearance as a tool for

designing optimization algorithms on NISQ devices.

1.3 Variational Algorithms

Traditional quantum algorithm design assumes access to a universal, fault-tolerant

quantum computer with polynomial space and time in the problem size. However, many

algorithms designed this way are rendered unimplementable on NISQ devices, which are

limited in size, noisy, and non-universal. In the past few years, the search for NISQ

applications has brought about a shift in perspectives regarding algorithm design. Instead

of thinking of the circuit as a static construct, one can reframe the computation as a

parameterized, time-constrained evolution of the quantum state. The choice of parameters

is problem-dependent, and may be discovered via classical optimization that queries the

output of the circuit with a particular choice of parameters. Thus, the quantum and

classical parts can work in tandem as co-processors. This hybrid approach effectively

lightens the computational burden on the quantum device by outsourcing the parameter

search to the classical computer.

There are several ways to analyze the usefulness of a parameterized circuit design,

of which we note two: expressibility and control. The expressibility of a parameterized

circuit framework is its ability to approximate states in the Hilbert space [20]. Control,

8

on the other hand, is concerned with achieving a specific outcome out of all possible

expressions of a parameterized circuit, and is closely related to the notions of trainability

and reachability also found in the literature. In fact, it has been found that too much

expressibility can lead to low trainability due to the appearance of the so-called ‘barren

plateaus’ in the cost landscape [21]. Results like this are indicative of the need for good

design in parameterized quantum circuits.

One of the most promising applications of the parameterized circuit approach is

towards problems of approximate optimization. Broadly, the goal of these algorithms is

to minimize a given cost function, which is usually the energy of a target Hamiltonian.

This problem finds extensive applications in physics, chemistry, material science, as well

as in classical combinatorial optimization problems that are reformulated as ground state

minimization problems on spin variables. Algorithms for approximate optimization have

come to be known as variational algorithms. The word ‘variational’ here is derived from

the variational principle (a version of the Rayleigh-Ritz, or simply Ritz, method [22]),

which asserts that the observed energy of a physical state provides an upper bound to the

energy of the system’s ground state.

One of the topics we explore in this thesis is the control of variational algorithms.

While control theory is far from new [23], ideas from it have been only recently applied

to variational algorithms [24, 25]. There are two parameterized circuit frameworks

that perhaps best illustrate the difference in control strategy. The first is known as

quantum adiabatic optimization (QAO) [26]. Historically, a closely related algorithm

known as quantum annealing [27] was introduced around the same time, but here

we will not distinguish them and focus on their similar approach. These algorithms

9

rely on the principle that physical systems remain in equilibrium under slow external

changes. The quantum adiabatic theorem guarantees that a system that starts in the

ground state of a time-dependent Hamiltonian with a finite spectral gap remains in the

ground state at all times if the Hamiltonian varies infinitely slowly. (The spectral gap

is the difference between the ground state energy and the energy of the first excited

state.) For Hamiltonians varying at a finite rate, an approximate version of the theorem

continues to hold if the rate of change is small compared to the spectral gap at any point

in time. Therefore, the idea in QAO is to start in the ground state of a known Hamiltonian

(canonically the transverse field −
N∑
i=1

Xi) and to tune the Hamiltonian slowly into the

target Hamiltonian. If the gap condition is satisfied, then the final state is guaranteed to be

close to the target ground state. The annealing curve, which dictates how the Hamiltonian

is varied in time, is described by one or more control parameters that may be tuned to

improve the convergence of the algorithm.

The second algorithm framework, proposed in 2014, is known as the quantum

approximate optimization algorithm [28]. This too has a close relative, the independently

proposed variational quantum eigensolver, or VQE [29]. Like QAO, the goal of QAOA

is to evolve a known initial state (usually the transverse field ground state, |+〉N) into

the target state. However, unlike QAO, the evolution is not described by a smoothly

time-varying Hamiltonian but rather by a sequence of alternating Hamiltonian evolutions.

In the original formulation, one alternates between the initial Hamiltonian (known as

the mixer) and the target Hamiltonian (the driver). The variational parameters in this

framework are the evolution times (or “angles”) in each round, as well as the total number

of rounds, p.

10

The two frameworks mentioned above are by no means an exhaustive list, but

they capture an essential difference in the design of NISQ circuits. In the algorithms

of annealing type, the time-variation is slow and (usually) smooth. On the other hand,

QAOA and VQE employ bang-bang control, where the parameters are piecewise constant

functions of time and take either the maximum value or the minimum value of 0. In fact,

it is possible to formulate both QAOA and QAO as two special instances of the same

underlying algorithm, but with different control schedules.

In Chapter 5, we investigate the difference in performance achievable with the

different forms of control present in QAOA, QAO, as well as two classical analogues

of these frameworks. We show that on crafted toy instances, it is possible to obtain an

exponential separation in runtime between annealing-type control and bang-bang control.

This chapter is based upon Ref. [30]. (In subsequent work not covered in this thesis [31],

we argue through a careful analysis that the optimal control in the variational setting is in

general not bang-bang as previously believed, but instead of bang-anneal-bang form.)

In Chapter 6, we report on an implementation of VQE on an analog, trapped-ion

quantum simulator to find the ground state of a critical, one-dimensional Ising model with

long-ranged interactions. We show that by discovering patterns in the variational angle

sequences, one can design classical heuristics for guessing good parameters that scale

well with problem size and the depth of the variational circuit. This work is based upon

Ref. [32] and was done in collaboration with the QSim laboratory in the Monroe group at

UMD.

Finally, in Chapter 7, we study a classical optimization algorithm that is inspired by

the structure of QAOA. Starting with the original construction of Hastings [33], we tune

11

the algorithm on benchmarking instances of the MaxCut problem. In the process, we learn

heuristics for choosing the variational hyperparameters that are physically motivated.

Surprisingly, the algorithm can be shown to mimic imaginary-time Schrödinger evolution

under the problem Hamiltonian. This chapter is based upon work published in Ref. [34].

12

Chapter 2: Unitary entanglement construction in hierarchical networks

2.1 Introduction

As quantum computers grow from the small, few-qubit machines currently

deployed to the large machines required to realize useful, fault-tolerant computations, it

will become increasingly difficult for every physical qubit to be part of a single contiguous

piece of hardware. Just as modern classical computers do not rely on a single unit of

processing and memory, instead using various components such as CPUs, GPUs, and

RAM, we expect that a quantum computer will likewise use specialized modules to

perform different functions. At a higher level, computers can be organized into clusters,

data centers, and cloud services which allow for a distributed approach to computational

tasks, another paradigm quantum computers will no doubt emulate. Already, there has

been significant interest in how quantum algorithms for elementary operations such as

arithmetic perform in distributed-memory situations [35, 36] and how to automate the

design of quantum computer architectures [37]. In addition, the construction of a fault-

tolerant quantum computer naturally suggests a separation of physical qubits into groups

corresponding to logical qubits, which makes modularity an attractive framework for

building fault-tolerant computers [38]. Modular and scalable computing architectures

have been explored for both ion trap [7, 39] and superconducting platforms [9, 40, 41].

13

In this chapter, we use tools from graph theory to discuss benefits and drawbacks

of different potential architectures for a modular quantum computer. A graph-

theoretic approach allows us to flexibly examine a wide range of possible arrangements

quantitatively and allows for convenient numerical simulation using existing software

packages designed for network analysis [42]. We especially wish to focus on families

of graphs that can scale with the desired number of qubits. In general, we assume that

connectivity, i.e., being able to quickly perform operations between nodes, is desirable

in an architecture, but that building additional graph edges is in some way costly or

difficult, and so will try to minimize the number of needed edges to achieve a highly

communicative graph.

We will make use of a previously described graph-theoretic binary operation known

as the hierarchical product [43, 44]. We will use this iteratively to describe a new family

of graphs we dub “hierarchies.” We will show that hierarchies perform well by many

commonsense graph metrics and argue that they would serve as a plausible and efficient

basis for a quantum computing architecture. Furthermore, we will demonstrate that these

graphs allow for easily-implemented heuristic procedures to assist in the compilation of

quantum algorithms.

We will examine the performance of graphs in generating large entangled states

such as the multi-qubit Greenberger-Horne-Zeilinger (GHZ) state (also known as a cat

state). The GHZ state has perfect quantum correlations between different qubits; it thus

can be used to perform high-precision metrology [45, 46]. In addition, the creation of a

GHZ state can be used as part of a state-transfer protocol, which may be useful as part of

large quantum computations [47].

14

An additional property of GHZ state preparation and state transfer which makes

them a useful starting point is that, in nearest-neighbor connected systems, performing

these tasks using unitary processes from an initial product state is limited by the Lieb-

Robinson bound [48, 49]. It takes a time proportional to the distance between two points

to establish maximal quantum correlation between them. This is also a direct corollary of

the fact that in a quantum circuit consisting of geometrically local gates, the light cone of

any qubit grows linearly in the depth of the circuit. By examining these tasks on a range of

different graphs, we hope to understand how the graph structure can affect the limitations

on quantum processes caused by locality considerations. Prior work has characterized

the difficulty of creating graph states [50], but preparation of such states is not limited by

Lieb-Robinson considerations.

Our work in this chapter should be contrasted with work on entanglement

percolation [51,52]. Entanglement percolation describes the process of using low-quality

entanglement between adjacent nodes on a graph to create one unit of long-range, high-

quality entanglement (e.g., a Bell pair). The use of entanglement percolation to prepare

large cluster states on a lattice was considered in Ref. [53]. The nature of entanglement

growth in complex networks was considered in Refs. [54, 55], showing that so-called

“scale-free” networks are particularly easy to produce large entangled states in. We

are interested in the overall capability of different graph structures to perform large

computations and in the use of graph eigenvalue methods to understand the spread of

quantum information [56]. GHZ state preparation and state transfer are just two possible

benchmark tasks, and it is possible that other tasks would result in different evaluations

of relative performance between graphs.

15

Our work should also be considered in the context of classical network theory,

where much is known about complicated graph structures [57–59]. It remains to be

seen to what degree classical network theory can be easily exported to the quantum

domain. Quantum effects such as the no-cloning theorem may limit our ability to

distribute information, or conversely we can take advantage of teleportation to distribute

quantum bandwidth in anticipation of it actually being needed. As further examples of

how quantum and classical networks differ, it has been shown that entanglement swapping

may be used to permit quantum networks to reshape themselves into interesting and

useful topologies [60]. It has also been shown that, in general, the optimal strategy for

entanglement generation in quantum networks can be difficult to calculate because many

aspects of classical control theory do not apply [61].

The structure of this chapter is as follows. In Sec. 2.2, we will introduce a

binary operation on graphs known as the hierarchical product, describe how it can be

used to produce families of graphs we call hierarchies, and discuss the properties of

these hierarchies. In Sec. 2.3, we will compare hierarchies to other families of graphs,

examining how certain graph-theoretic quantities scale with the total number of included

qubits. Readers who are not interested in graph theoretic details may wish to skip much

of these first two sections. In Sec. 2.4, we will use analytic and numerical methods to

examine how long is required to construct GHZ states spanning our graphs or to transfer

states across them, using Lieb-Robinson bounds to connect graph-theoretic quantities to

bounds on quantum computing performance. Finally, in Sec. 2.5, we will show how the

unique structure of hierarchies allows for simple heuristics to map qubits in an algorithm

into physical locations in hardware.

16

2.2 Hierarchical Products of Graphs

2.2.1 Background and Notation

One of the defining features of modularity in a network is the presence of clusters

of nodes that are well-connected. Qualitatively, a modular network can be partitioned

into such node clusters, or modules, that have a sparse interconnectivity. In quantum

networking, it is believed that fully connected architectures will suffer greatly decreasing

performance or increasing costs as the number of nodes becomes larger, and this motivates

the search for alternative network designs. For instance, Ref. [8] estimates that a single

module of trapped-ion qubits will likely contain no more than 10 to 100 ions, noting that

the speed at which gates are possible becomes slower as the module is expanded. On

the network scale, we might imagine a network of nodes over longer distances connected

by quantum repeaters [62]. In such a network, establishing direct links between every

possible pair of N nodes would require Θ(N2) sets of quantum repeaters, a prohibitive

cost as N becomes large.

The state of the art in quantum technologies, such as ion traps and superconducting

qubits, is the ability to control a small number (≈ 10 − 100) of physical qubits using

certain fixed sets of one- and two-qubit operations. Instead of increasing the size of these

modules, one could instead build a network out of many small modules that are connected

at a higher level in a sparse way, perhaps by optical communication links [8].

Our first goal will be to describe modular architectures in the language of graph

theory. This will then allow us to quantify and compare their connectivity properties

17

against other network designs, notably the nearest-neighbor grid architecture.

Our detour into graph theory in this chapter serves two purposes. First, it will

allow us to develop a rigorous way to construct families of graphs which we believe are

promising quantum computing architectures. Second, we will later (beginning in Sec. 2.4)

use these graph properties to connect directly to physical bounds on the generation

of states with long-range quantum correlations; phrasing the properties of quantum

architectures as graphs allows us to make a direct application of the Lieb-Robinson bound

to these cases.

An unweighted graphG = (V,E) is conventionally specified by a set of vertices V ,

and a set of edges between the vertices E, where an edge between distinct vertices i and

j will be denoted by the pair (i, j). In this chapter, we use the terms “vertex” and “node”

synonymously. The order of a graph is the total number of vertices in the graph, |V |. It

will be useful for the purposes of this chapter to work with weighted graphs, where we

specify a weight wij ∈ R for each pair of vertices (i, j) ∈ V × V . Two vertices i and j

are said to be disconnected if wij = 0, and connected by an edge with weight wij 6= 0

otherwise. Thus, unweighted graphs may be thought of as graphs with unit weight on

every edge.

Finally, the graphs we consider here will be simple, meaning:

• The edges have no notion of direction. In other words, wij = wji for all i, j ∈ V .

• There are no self-edges, i.e., wii = 0 for all i ∈ V .

• Any two vertices have at most one edge between them.

Henceforth, graphs will be simple and weighted, unless otherwise specified.

18

The information contained in a graph can be represented as a matrix known as the

adjacency matrix, whose rows and columns are labeled by the vertices in V and whose

entries hold edge weights. Thus, the adjacency matrix is an n× n matrix where |V | = n.

The adjacency matrix AG (or simply A for shorthand) for a graph G is given by

Aij =


0, if i = j,

wij, if i 6= j.

(2.1)

An important measure of local connectivity is given by the valency vi of a node i, with

vi =
n∑
j=1

wij . For unweighted graphs, the valency of any node is simply the number of

edges incident at that node, otherwise known as the degree of the node. We will also

define the graph diameter, δ(G), as the maximization of the shortest distance between

two nodes on the graph over all pairs of nodes.

Graphs may also be described by the Laplacian. The algebraic Laplacian L is given

by

Lij =


vi, if i = j,

−wij, if i 6= j.

(2.2)

The algebraic Laplacian is closely related to the adjacency matrix, since we may write

L = ∆ − A, where ∆ = diag (v1, . . . , vn) is the diagonal matrix of vertex valencies.

The eigenvalues of the algebraic Laplacian give us bounds on various graph properties,

as discussed further in Sec. 2.2.2.4.

Finally, we remark that the algebraic Laplacian should not be confused with the

normalized Laplacian L = ∆−
1
2L∆−

1
2 , which is frequently seen in the network theory

19

literature. The algebraic properties discussed in the next section (such as associativity of

the hierarchical product) apply to the adjacency matrix as well as the algebraic Laplacian,

but not to the normalized Laplacian.

2.2.2 Hierarchical Product

Here, we will define the hierarchical product and illustrate it with simple examples.

For a fuller exposition, see Ref. [43], where the hierarchical product of graphs was

introduced. Note that, in some contexts, the hierarchical product is also known as the

rooted product [44].

Given a graph G, let 1G denote the identity matrix on n = |V | vertices. We will

denote by DG an n × n diagonal matrix with 1 as the first entry and zero everywhere

else. Note that there is no natural notion of order to graph vertices, so the choice of “first”

vertex must be specified explicitly. Graphs with such a specified first vertex are called

rooted graphs [63]. We write these matrices as

1 =



1

1

1

. . .

1


, D =



1

0

0

. . .

0


. (2.3)

Definition 2.2.1. Given graphs G and H , the hierarchical product P = G Π H is the

graph on vertices VP = VG × VH and edges EP ⊆ VP × VP specified by the adjacency

20

Figure 2.1: A simple example of the hierarchical productGΠH between the cycle graphsG = C4

andH = C3. The first term in Eq. (2.4),AG⊗DH , creates one copy ofG on the vertex set formed
by the first vertices of each H copy, while the second term 1G⊗AH creates the four copies of H .

matrix

AP = AG ⊗DH + 1G ⊗ AH , (2.4)

or, equivalently, by the algebraic Laplacian

LP = LG ⊗DH + 1G ⊗ LH . (2.5)

We will often use the shorthand AP = AG Π AH and LP = LG Π LH .

If G and H are graphs, then G Π H may be thought of as one copy of G with |G|

copies of H , each attached to a different vertex of G (see Fig. 2.1). Thus, G Π H is a

graph which has |G| modules of |H| nodes each. The modules’ internal connectivity is

described by H , and the modules are connected to one another in a manner described by

G. The hierarchical product formalism therefore naturally produces modular graphs. Its

main advantage comes from the convenience of working with the algebra at the level of

adjacency matrices and Laplacians, which in turn makes the computation of important

21

properties of such graphs straightforward.

We now present some properties of the hierarchical product which make it an

attractive formalism for practical applications in quantum networking.

2.2.2.1 Structural Properties

At the level of adjacency matrices, the hierarchical product is associative. Let

A,B,C be three adjacency matrices. Then,

(A ΠB) Π C = A Π (B Π C) . (2.6)

For a proof, we refer the reader to Ref. [43].

Associativity implies that a product of multiple graphs does not depend on the order

of evaluation. Therefore, we can unambiguously take the hierarchical product over many

graphs to produce a graph of the form Gk ΠGk−1 Π · · ·ΠG1. We will refer to such graphs

as hierarchies, and the i-th graph in the product Gi as the i-th level of the hierarchy,

enumerated from the bottom level upwards (symbolically, from right to left). In particular,

if all Gi are equal to some graph G, then we write

GΠk := G Π · · ·GΠ︸ ︷︷ ︸
k−1 times

G. (2.7)

and refer to GΠk as a depth-k (or k-level) hierarchy.

Note that the hierarchical product does not satisfy many properties which are

commonly assumed for operations on matrices. In particular,

22

1. Bilinearity: (A1 + A2)ΠB = A1⊗DB+A2⊗DB+1(A1+A2)⊗B 6= A1ΠB+A2ΠB.

Similarly, A Π (B1 +B2) 6= A ΠB1 + A ΠB2.

2. Scalar multiplication: For any scalar α, (αA) Π B = αA ⊗ DB + 1A ⊗ B 6=

α (A ΠB) 6= A Π (αB). Note however that scalar multiplication is distributive in

the following way: α (A ΠB) = (αA) Π (αB).

Hierarchical graphs are also special cases of hyperbolic graphs. The Gromov

hyperbolicity [64], which measures curvature and is small for a graph with large negative

curvature, is only a constant for hierarchical graphs. Since the hyperbolicity in general

is at most half the graph diameter, whereas in this case it is independent of the diameter,

it is termed constantly hyperbolic in the parlance of Ref. [65]. Hyperbolic graphs are

seen in several real-world complex networks [66, 67], most notably the internet [68, 69].

Hyperbolic lattices have also been realized recently in superconducting circuits [70].

Finally, hierarchies have low tree-, clique- and rank-widths, which are each

measures of the decomposibility of a graph [71]. These structural properties imply

efficient algorithms for optimization problems expressible in monadic second-order

(MSO) logic – a class which, for arbitrary graphs, includes several NP-hard problems.

This feature could be useful in solving circuit layout and optimization problems on

modular architectures without resorting to heuristics. We refer the reader to Ref. [72]

for details on these structural results.

23

2.2.2.2 Scalability

So far we have discussed hierarchies in which the edges in different levels of the

hierarchy are equally weighted. However, one useful generalization would be to allow

the weight of edges at each layer of the hierarchy to vary. The meaning of this weight

could vary depending on the context. In some cases, weights can be used to quantify the

costs of an edge (cost weight). In others, we may wish to use weighted edges to quantify

the power or performance of a network, interpreting edge weights as the strength of terms

in a Hamiltonian or, inversely, the time required to communicate between nodes (time

weight).

In this work, we prefer to remain agnostic to the meaning of the weights as much

as is possible. When we calculate graph properties in Sec. 2.3, we will do so without

reference to the meaning of the weights. In general, we will allow a graph to assign

multiple kinds of weights to its edges, and each type of weight might scale differently.

For now, we define a generalization of the hierarchical product which will allow us to

construct hierarchies that incorporate different weights at different levels of the hierarchy.

Definition 2.2.2. Given graphs G and H , and α ∈ R+, the α-weighted hierarchical

product P = G Πα H is a graph on vertices VP = VG × VH and edges EP ⊆ VP × VP

specified by the adjacency matrix

AP = αAG ⊗DH + 1G ⊗ AH , (2.8)

24

or, equivalently, by the algebraic Laplacian

LP = αLG ⊗DH + 1G ⊗ LH . (2.9)

We will often use the shorthand AP = AG Πα AH , and LP = LG Πα LH .

As before, we may construct a k-level, weighted hierarchy out of k base graphs

G1, . . . , Gk, and k weights (αi, . . . , αk) ≡ α, so that the edges of the i-th level graph Gi

are weighted by the i-th component of α, αi. The adjacency matrix of such a hierarchy

may be written as

AΠαk :=
k∑
i=1

αi1[i+1. .k] ⊗ Ai ⊗D[1. .i−1], (2.10)

where the subscripts [a . . b] on 1 and D are shorthand for the Kronecker product

of matrices over all descending indices in the integer interval [a . . b]. For instance,

D[1. .i−1] := DGi−1
⊗DGi−2

⊗ · · · ⊗DG1 .

Defined as above, a weighted hierarchy GΠαk is uniquely and efficiently specified

by a real vector of weights α ∈ R+
k and an ordered tuple of graphs (G1, . . . , Gk). It will

be the case that our analyses are unaffected by an overall scaling of the weight vector,

so that one may identify α ≡ cα for any real scalar c. As convention, we will always

normalize by setting α1 = 1, which corresponds to assigning a unit-weight multiplicative

factor to the lowest-level graphs in the hierarchy. Then, as stated previously, the edges at

the i-th level of the hierarchy are weighted by αi. We will shortly narrow our focus to

weighted hierarchies where the weights follow a geometric progression, αi = αi−1.

We can construct the adjacency matrix of the graph GΠαk by repeated application

25

of the two-fold product (Def. 2.2.2) in some well-defined way, analogous to Eq. (2.7).

However, unlike before, the weighted product is non-associative, so we must first define

an order of operations for manifold weighted products. Unless otherwise specified, we

will always evaluate a manifold product from right to left, which corresponds to building

the hierarchies from the bottom up, and is required in order to ensure that this definition

matches Eq. (2.10). For example, in the 3-fold product A3 Πα3 A2 Πα2 (α1A1), we will

first evaluate the product A2 Πα2 (α1A1), and then take the product of A3, weighted by

α3, with the resulting graph. The final result is

α3A3 ⊗D2 ⊗D1 + α213 ⊗ A2 ⊗D1 + α113 ⊗ 12 ⊗ A1. (2.11)

In fact, a k-fold product, when evaluated this way, matches the right hand side of

Eq. (2.10). Therefore, the k-level weighted hierarchy can also be written unambiguously

as

AΠαk = Ak Παk Ak−1 Παk−1
· · · Πα2 (α1A1). (2.12)

Henceforth, the weight α1, which scales the lowest-level adjacency matrix A1, will be

dropped due to our normalization choice of α1 = 1.

An important class of hierarchy graphs is one where the level weights follow a

geometric progression of weights, i.e., αi = αi−1. We will denote such hierarchies by

GΠαk, where the scalar subscript α will be understood to mean the mutual weighting

between successive hierarchies. For α > 1, this leads to a “fat tree” structure, while for

α < 1, we instead get a “skinny tree” for which the edge weights decrease between

26

consecutive levels from the leaves to the root. These constructions are illustrated in

Fig. 2.2, and mentioned because fat trees are known to be a commonly used architecture

in classical networks [73].

Figure 2.2: An illustration of the use of the hierarchical product to produce (a) “skinny” and (b)
“fat” trees. In each case, the hierarchy KΠα3

3 is drawn, with the thickness of edges illustrating
the weight of those edges. Depending on whether α < 1 or α > 1, this can lead to either
lower-weighted high-level edges as in (a) or higher-weighted ones as in (b). Note that, for ease of
visualization, here we break the usual convention of taking the lowest-level edges as unit weight.

Allowing a clear separation of the modular system into hierarchical levels, each

of which can be assigned unique edge weight, enables straightforward discussion of

computation that occurs both within and between modules in a unified framework. When

two nodes interact, we can assign this a cost that depends on the edges between them.

2.2.2.3 Node Addressal

A hierarchy onN nodes gives a natural labeling of the nodes. Suppose the hierarchy

H contains k levels and each level is described by a graph G with |G| = n nodes,

where nk = N . Label the vertices of G by indices j = 0, 1, . . . , n − 1. Then, the

adjacency matrix 1G ⊗ G (which corresponds to n disjoint copies of G) has vertices

which may be labeled as (jk), where j, k = 0, 1, . . . n − 1. The first label identifies

27

0

1 2
0

1 2
0

1 2
(122)

Figure 2.3: Addressing nodes in the hierarchy, layer by layer. Shown is a three-level hierarchy
with the triangle graph K3 as its base. Each vertex is represented as a 3-digit number in base 3.
The first digit points to a node at the top level (red solid triangle), the second to a location in the
second level (blue dashed triangle), and finally, the last digit (yellow dotted triangle) specifies the
node location completely.

which copy of G the node occurs in, while the second identifies where in G it appears.

The same vertex labeling can then be used for the 2-level hierarchy G Π G. In this

manner, the k-level hierarchy has nk vertices with labels of the form (b1b2 · · · bk), where

bi ∈ {0, 1, . . . , n− 1} for all i. This is essentially a k-digit, base-n representation of

numbers from 0 to N = nk − 1, as illustrated in Fig. 2.3.

This node addressal scheme allows for each node to be uniquely identified in a way

that simultaneously describes its connectivity to other nodes and allows for easy counting

of how many nodes lie in either the entire graph or in particular subgraphs. This addressal

scheme will be important for describing a variant of hierarchies in Sec. 2.2.2.5 and for

implementing the graphs in software, e.g. as used to generate the numerical results in

Sec. 2.4.3.

28

2.2.2.4 Spectral Properties

One of the tools frequently used in analyzing large networks is the spectral

decomposition of the Laplacian. The behavior of the largest eigenvalue, the first

eigenvalue gap, and the distribution of eigenvalues as a function of the network parameters

are some of the diagnostics that can provide key information about dynamical processes

on the network, and can also be used as points of comparison between competing network

topologies [74].

The smallest eigenvalue of a Laplacian is always λ1 = 0, which corresponds to the

uniform eigenvector e1 = (1, 1, . . . , 1). In ascending order, the eigenvalues of L may be

denoted by 0 = λ1 ≤ λ2 ≤ · · · ≤ λN . We now state some graph properties that can be

related to the spectrum of L [74, 75].

The second eigenvalue λ2 is known as the algebraic connectivity of the graph and

is closely related to the expansion and connectivity properties of the graph. Broadly,

the larger the value of λ2, the better the connectivity of the network. To illustrate this

point, consider the graph diameter, δ(H), which can be bounded using λ2 as follows [74,

Theorems 4.1.4, 4.1.10]:

4

Nλ2

≤ δ (H) ≤ 2
⌈∆ + λ2

4λ2

ln (N − 1)
⌉
, (2.13)

where ∆ is the maximum degree of H . It can be seen that a larger value for λ2 will lead

to a smaller graph diameter. We also have the following asymptotic bound on the mean

29

distance between nodes [75, Equations 6.13, 6.14], ρ̄(H):

2

(N − 1)λ2(H)
+

1

2
. ρ̄(H) .

⌈∆ + λ2

4λ2

ln (N − 1)
⌉
. (2.14)

Another important diagnostic of a network is given by the Cheeger constant h(H) [76],

also called the edge isoperimetric number or the graph conductance. This graph invariant

is a measure of how difficult the graph is to disconnect by cutting edges, and is defined as

follows:

Definition 2.2.3. For any node subset A of a graph H = (V,E), let δ(A, Ā) denote the

set of edges with exactly one node in A. Then, the Cheeger constant of H , denoted h(H),

is given by

h(H) = min
A⊂V
|A|≤N/2

|δ(A, Ā)|
|A| . (2.15)

For a connected graph, the Cheeger constant is always positive. As benchmark

values, the complete graph KN has Cheeger constant N/2 while a cycle graph CN has

Cheeger constant 4/N . The relationship between λ2 and h(H) can be seen through the

following bounds:

λ2

2
≤ h(H) ≤

√
λ2 (2∆− λ2). (2.16)

Many other graph properties may be derived from the Laplacian spectrum as well (see,

e.g., Refs. [74, 75]).

For a large network, finding the eigenvalues can be numerically expensive.

However, hierarchies have a special structure which can be exploited for the evaluation

of graph spectra. Here, we show (in Theorem 2.2.1) that if the spectra of the base

30

graphs Li are known, then one can derive the spectrum of the k-level hierarchy efficiently

using a recursive procedure. We first present two lemmas. The first lemma generalizes

Theorem 3.10 from Ref. [43], which states that the characteristic polynomial φP (x)

(= det [x1− P]) of an unweighted hierarchical product of adjacency matrices A, B is

given by

φP (x) = φB′ (x)nA φA

(
φB (x)

φB′ (x)

)
, (2.17)

where A′ (resp. B′) is the matrix A (resp. B) with the first row and first column removed,

and nA = |GA| is the order of the graph A. In fact, Eq. (2.17) applies to Laplacians

as well as adjacency matrices. The lemma below further generalizes this statement to a

weighted product of Laplacians.

Lemma 2.2.1. Let K and L be two graph Laplacians with characteristic polynomials

given by φK(x) and φL(x), respectively. Then, the characteristic polynomial φΠ(x) of the

hierarchical product K Πα L is given by

φΠ (x) = [αφL′ (x)]nK φK

(
1

α

φL (x)

φL′ (x)

)
, (2.18)

where nk = dim {K}, and L′ is defined similar to A′ and B′ above.

Proof. Denote the spectra of K and L by {κj} and {λj}, respectively. Recall that the

α-weighted hierarchical product may be written as

K Πα L = αK ⊗DL + 1K ⊗ L. (2.19)

31

If UK is a unitary that diagonalizes K, we conjugate the above equation with the unitary

UK⊗1L, and look at the resulting block matrix. Each block corresponds to an eigenvalue

of K, and thus the j-th block is given by ακjDL + L. The full spectrum may then be

expressed as a disjoint union of the block spectra,

spec (K Πα L) =

|K|⊔
j=1

spec (ακjDL + L) . (2.20)

Now, we apply Eq. (2.17) to K Πα L ≡ (αK) Π L and use the fact that φαK(x) =

det [x1− αK] = αnK det
[
x
α
1−K

]
≡ αnKφK

(
x
α

)
. This yields Eq. (2.18), as desired.

Now we show that if the eigenvalues of K and the polynomials φL and φL′ are

known, then there is a straightforward procedure to compute the eigenvalues of K Πα L.

Lemma 2.2.2. Let K and L be graph Laplacians, as before. Each eigenvalue of the

product characteristic polynomial φΠ can be found as a solution of the equation

ακi =
φL (x)

φL′ (x)
(2.21)

for some K-eigenvalue κi.

Proof. Any eigenvalue of the product graph must be a zero of the left-hand side of

Eq. (2.18) and, by equality, a zero of the right-hand side. Now, the degree of polynomial

φK is nK , which implies that the term of degree nK must be nonzero. Thus, in the product

φL′ (x)nK φK

(
1
α
φL(x)
φL′ (x)

)
, there must be a term which is indivisible by the polynomial

32

φL′ (x). Therefore, the zero of the right-hand side cannot be a root of the polynomial

φL′ .

We are seeking values of x such that the polynomial φK
(

1
α
φL(x)
φL′ (x)

)
evaluates to

zero. In other words, we are looking for x such that the term 1
α
φL(x)
φL′ (x)

is a root of φK .

Therefore, we solve Eq. (2.21) for x, for all roots κi of K.

If the forms of φL and φL′ are known (and if each have sufficiently low degree), then

computing the roots of φΠ becomes tractable, even if K is a large matrix. This suggests

a recursive procedure for computing the spectrum of a k-level hierarchy, by writing it as

a product of the (k − 1)-level hierarchy with the k-th base graph. We now frame this as

our main result of this section:

Theorem 2.2.1. Suppose we have a k-level hierarchy LΠαk described by base graph

Laplacians L1, L2, . . . , Lk and weights α = (1, α2, . . . , αk) as follows,

LΠαk = Lk Παk Lk−1 Παk−1
· · · Πα3 L2 Πα2 L1. (2.22)

Define a new set of weights β = (1, β2, . . . , βk) with βi = αi/αi−1, and a new set of

Laplacians Mk,Mk−1, . . . ,M1 recursively as

Mk = Lk,

Mi = Mi+1 Πβi+1
Li.

Then, the following hold:

1. M1 = LΠαk.

33

2. Any eigenvalue of Mi (for i < k) may be found as a solution to the equation

βi+1µ
(i+1) =

φLi(x)

φL′i(x)
(2.23)

for some µ(i+1) ∈ spec {Mi+1}.

Proof. First, we prove statement 1. It can be seen that

Mk−1 = Mk Πβk Lk−1 = Lk Πβk Lk−1

=
1

αk−1

(αkLk ⊗Dk−1 + αk−11k ⊗ Lk−1) , (2.24)

Mk−2 = Mk−1 Πβk−1
Lk−2

=
1

αk−2

(αkLk ⊗Dk−1 ⊗Dk−2 +

αk−11k ⊗ Lk−1 ⊗Dk−2 + αk−21k−1 ⊗ 1k−2 ⊗ Lk−2), (2.25)

and so on, until we have an α-weighted sum over all k of the base graphs (with an overall

denominator of α1 = 1), which is precisely LΠαk.

The proof of statement 2 follows as a direct consequence of Lemma 2.2.2, with

K = Mi+1, L = Li, and α = βi+1.

Theorem 2.2.1 provides an algorithm to compute the spectrum of LΠαk, namely:

1. Compute the relative weight vector β from α.

2. Start with i = k, where the spectrum of Mk = Lk is known. Decrease i by one.

3. Compute the spectrum of Mi from the known spectrum of Mi+1 and Eq. (2.23).

Decrease i by one.

34

4. Perform step 3 repeatedly, halting at i = 0. Return the spectrum of M1 = LΠαk.

Therefore, given a large hierarchy, one can efficiently compute the Laplacian eigenvalues

and use them to find bounds on important graph properties. This is a scalable technique

for obtaining figures of merit efficiently for hierarchies. Later, in Sec. 2.3, we will present

analytic results for some of these figures of merit for simple hierarchies, but the results of

the current section can be used even in more complicated cases, such as hierarchies that

do not use the same G at every layer or that have heterogeneous scaling parameters.

Figure 2.4: Two topologies with the same number of nodes (28) and edges (49). While the
diameters for the two graphs are the same, are they equally well-connected? A comparison of
the Cheeger constants (see Table 2.1) suggests that the left graph is less interconnected. This is
consistent with the spectral gap, which is smaller for the left graph, indicating poorer connectivity.

Due to the structural richness and heterogeneity of graphs, it is not always easy to

decide whether one graph is, for instance, more connected than another graph. One aspect

of connectivity is how close the nodes are to one another, which is captured by quantities

like the diameter and mean distance. In Fig. 2.4, we compare two graphs, C7 Π K4 and

K7 Π C4, which have an identical number of nodes (28) and edges (49). The two graphs

also have identical diameters (5 each), but the mean distance for the left graph is smaller

(see Table 2.1). Under these measures, the left graph appears better connected.

35

Better connectivity also corresponds to having fewer bottlenecks in the graph,

which corresponds to a larger Cheeger constant. In Fig. 2.4, the graph on the right has

a larger Cheeger constant, as one would expect given that it has complete connectivity

between the seven modules. Note that this metric of connectivity need not agree with the

mean distance, as seen in this example.

Similarly, a parameter-by-parameter comparison of the two hierarchy graphs C13 Π

K5 and K13 Π C5 (Table 2.1) reveals that, while both graphs are two-level hierarchies

with the same number of nodes and edges, K13 Π C5 has the smaller diameter, smaller

mean distance, larger cheeger constant, and a larger spectral gap, all of which indicate

better connectivity. While structural comparisions for the above examples can be carried

out simply by inspection or a quick calculation of graph quantities, general hierarchies

may be far too complex to compare this way. In practice, when choosing a modular

topology with the best connectivity, one might hope for a single, balanced measure of

connectivity that relates to aspects such as node distance and bottleneckedness and is easy

to compute. The spectral gap λ2 meets these requirements. It is asymptotically related

to the other invariants discussed here via upper and lower bounds in Eqs. (2.13), (2.14)

and (2.16). Furthermore, λ2 can be efficiently computed using the recursive procedure

described earlier in this section.

2.2.2.5 Truncated Hierarchical Product

In some scenarios, there may be physical or technological limitations on the total

number of interconnections allowed at a single node of a quantum computer. In our

36

Graph Invariant C7 ΠK4 vs. K7 Π C4 C13 ΠK5 vs. K13 Π C5

Number of edges 49 49 143 143
Number of nodes 28 28 65 65
Diameter 5 5 8 5
Mean distance 2.68 2.71 4.77 3.23
Cheeger constant 0.17 1.0 0.07 1.4
Spectral gap λ2 0.16 0.46 0.04 0.34

Table 2.1: Comparison of topologies by connectivity measure. In each case, the graphs being
compared have an identical number of nodes and edges. The better value for each comparison is
underlined.

Figure 2.5: A demonstration of how our hierarchical product can be truncated to avoid requiring
many interconnections at one node. As the hierarchy grows, the graph is duplicated and then
attached to a subset of nodes in a larger version of the base graph, G.

37

framework, this manifests as a restriction on the maximum degree of a node. We believe

that hierarchical structures can still prove useful in this context, but (as we will see in

Sec. 2.3) the hierarchy we have described thus far has a maximum degree which grows

linearly with the number of levels of the hierarchy.

We now introduce an architecture which maintains the hierarchical properties but

also has a bounded maximum node degree (i.e. maximum node degree that does not go

to infinity as the number of levels goes to infinity). To model such an architecture, we

modify the hierarchical product G1 Π G2. Whereas previously, |G1| copies of G2 were

connected according to G1, we now bring together |G1| − 1 copies, which we connect

according to G1, and add the root node of G1 without an associated subhierarchy (see

Fig. 2.5). When extended to a many-level hierarchy, this means that every node will be

connected to, at most, two levels, and so its degree will not grow as the hierarchy grows.

We will denote this truncated hierarchical product by G1 Γ G2, and its weighted version

as G1 Γα G2. It can be written algebraically in terms of adjacency matrices by adopting a

more general definition of the hierarchical product.

Definition 2.2.4. Given rooted graphs G and H , the weighted truncated hierarchical

product P = G Γα H is a graph on vertices VP = VG × VH and edges EP ⊆ VP × VP

specified by the adjacency matrix

AP = αAG ⊗DH + PG ⊗ AH , (2.26)

38

or, equivalently, the algebraic Laplacian

LP = αLG ⊗DH + PG ⊗ LH . (2.27)

Here, PG is a projector onto all nodes in G except the root node. At the level of adjacency

matrices, we may also write AP = AG Γα AH . An unweighted version, G Γ H , can be

obtained by setting α = 1.

An illustration of this architecture can be found in Fig. 2.5. From this definition,

we naturally derive both unweighted and weighted truncated hierarchies, GΓk and GΓαk.

We note that a generalization of this definition to allow an arbitrary projector (rather than

one that only excludes the root node) is possible, but we do not consider such a case in

this chapter.

The addressing scheme outlined in Sec. 2.2.2.3 can also be used for truncated

hierarchies. However, since many nodes do not sit atop sub-hierarchies in this case, not all

node addresses are valid. We will assume that the node in the i-th level which connects to

the level above it has a zero in the i-th digit of its address. In a truncated hierarchy, each

node whose address contains a zero (representing the “root” of a hierarchy) must have

only zeros in all following positions, as it does not contain any further sub-hierarchies.

The base-n addressal scheme can thus be used to specify which nodes are present in a

truncated hierarchy.

Note that the truncated hierarchical product adds nodes more slowly than (although

with the same scaling as) the hierarchical product structure specified at the beginning

of Sec. 2.2.2. When we perform graph comparisons in Sec. 2.3, we will consider all

39

Figure 2.6: Illustration of the graph structures considered in this section, each with nine nodes
except (f). (a) The complete graph K9. (b) The cycle graph C9. (c) The star graph S9. (d) The
nearest-neighbor grid in two dimensions. (e) The hierarchical product KΠ2

3 . (f) The truncated
hierarchical product of Sec. 2.2.2.5, KΓ2

3 .

cost functions and optimizations in terms of the total number of nodes so that the two

architectures can be compared fairly.

2.3 Graph Comparisons

Having developed the machinery to construct hierarchies, we will now evaluate

them against other potential architectures. Any evaluation is impossible to do in an

absolute sense, since what properties are desirable in a graph and how serious the cost

of improving them is will depend on both the application as well as the physical system

under consideration. In general, we assume that the most desirable quality of a graph is

some measure of connectivity or the ease with which the graph can transport information

between nodes. Note that it is always possible to translate between quantum circuit

architectures with some overhead. A detailed atlas summarizing these overheads can

40

be found in Ref. [77].

We will look at the scenario of state transfer, which is an important subroutine that

may need to be carried out if an algorithm requires gates to be performed between two

qubits that are not directly connected. We consider the worst-case state transfer time on

a given graph, which allows us to evaluate graphs without reference to any particular

quantum algorithm. If we are interested in the time taken for state transfer in the graph,

an appropriate metric can be the diameter of the graph, δ(H), under the assumption that

information transfer takes unit time along any edge in the graph. The diameter then

captures the maximum distance, and hence the maximum time required for information

to travel between any two nodes in the system.

For graphs produced by the weighted hierarchical product, we will also consider a

diameter which takes into account edge weight. This “weighted diameter,” δw(H), can be

found by considering all pairs of nodes j, k and identifying the two whose least-weighted

connecting path has the highest sum weight of edges. If we consider a path between two

nodes j and k to be a set of nodes P = {j, v1, v2 . . . vn, k} with a weight W (P) given by

the sum wj,v1 + wv1,v2 + · · ·+ wvn,k, then the weighted diameter can be written as:

δw(H) = max
j,k

min
P
W (P). (2.28)

One way to grasp why the weighted diameter is a useful quantity is to consider the time

weights of edges, where the weight signifies the time required to perform a gate between

two connected qubits. In this case, the weighted diameter is the maximum time it will take

us to perform a chain of two-qubit gates that connects two different qubits (for instance,

41

using SWAP operations to bring the two qubits to adjacent positions and then performing

the final desired operation).

However, optimizing only with respect to connectivity yields a trivial result, because

a fully connected graph is obviously most capable of communicating information between

any two points. Therefore, we will consider a number of different possible “costs”

associated with physical implementations of graphs. One potential input to the cost

function is the maximum degree of a graph, ∆(H). As discussed in the previous section,

we want to avoid needing to connect too many different communication channels to

a single node. Another is total edge weight w(H) – if it costs time, energy, money,

coherence, or effort to produce communication between two nodes, we should try to use

as few communication channels as possible.

We now walk through the calculations for several important graph quantities for

several graphs: an all-to-all connected graph, a cycle graph, a star graph, a square grid, a

hierarchy graph with scaling parameter α, and a truncated version of that same hierarchy

graph. We calculate how quantities scale with the total number of nodes N . For ease

of calculation, we assume that N nodes fit in the architecture of the current graph; for

instance, we assume N = `d for some integer ` for a d-dimensional square graph. All

results of this section are compiled in Table 2.2, and examples of the graphs for small N

are illustrated in Fig. 2.6.

42

Graph H δ δw ∆ w(H)
KN const. const. N N2

SN const. const. N N
CN N N const. N
Square grid, d-dim dN1/d dN1/d d dN
KΠαk
n , α 6= n lognN max

(
2

1−α , N
logn α

)
n lognN nNmax(1,logn α)

KΠαk
n , α = n lognN max

(
2

1−α , N
logn α

)
n lognN nN lognN

KΓαk
n+1, α 6= n lognN max

(
2

1−α , N
logn α

)
n nNmax(1,logn α)

KΓαk
n+1, α = n lognN max

(
2

1−α , N
logn α

)
n nN lognN

Table 2.2: Summary of scalings of important graph properties with total node number, N . For
every graph H , the columns contain (from left to right): diameter δ, weighted diameter δw,
maximum degree ∆, and total edge weight w(H). All entries describe only the scaling of the
leading coefficient with d, n, and N .

2.3.1 Graph Calculations

2.3.1.1 Complete Graph, KN

Since all nodes in a complete graph [Fig. 2.6(a)] have edges between them, the

diameter is simply 1. This comes at the cost of very high maximum degree, N − 1, as

every node is connected to all N − 1 other nodes. The total weight of every edge is the

same, and there are N(N − 1)/2 edges because every pair of nodes has a corresponding

edge. Therefore, the total edge weight scales as Θ(N2).

2.3.1.2 Cycle Graph, CN

In a cycle graph [Fig. 2.6(b)], the diameter is bN/2c, the distance to the opposite

side of the circle. The maximum degree is only 2, and the total weight of the edges is

likewise only N . This graph is thus able to reduce the cost factors associated with the

complete graph, but at the cost of a much higher asymptotic diameter.

43

2.3.1.3 Star Graph, SN

The star graph is the graph which has a single central node connected to all others

[Fig. 2.6(c)]. Like the complete graph, it also has a constant diameter, although this

diameter is two rather than one. The maximum degree of the star graph is N − 1, the

same as the complete graph. However, the star graph improves over the complete graph,

as it has a lower total edge weight of N − 1 rather than
(
N
2

)
. Thus, we have improved the

cost asymptotically without affecting the overall scaling of the diameter of the graph.

The example of SN raises a complication which we do not attempt to quantify in this

chapter. In a realistic distributed quantum computer, we expect that a significant amount

of operations need to be performed at the same time and need to be scheduled on the

graph. But in the star graph, all operations between nodes must pass through the single

central hub. This is likely to lead to a scheduling bottleneck when performing general

quantum algorithms. While we do not attempt to treat scheduling of such algorithms

on the network in this chapter, in future work we hope to consider these complications,

which will at times make the star graph unsuitable for real-world use. An experimental

comparison of the star graph and the complete graph in existing five-qubit quantum

computers can be found in Ref. [78]. In those experiments, the requirement that all

information be shuttled through a central node for the SN connectivity made high-fidelity

execution of quantum algorithms more difficult.

44

2.3.1.4 Square Grid Graph

We consider now a square grid (i.e., a hypercubic lattice) in d dimensions

[Fig. 2.6(d)]. Here, the diameter is d(N1/d − 1), since this is the distance from the point

in one corner labeled (1, 1, 1, . . .) to the opposite corner at (N1/d, N1/d, . . .) (note that

diagonal moves are not allowed). The maximum degree depends on the dimension, as

each interior node is connected to 2d other nodes. The total edge weight can be found by

considering that each node on the interior of the graph corresponds with exactly d edges,

and it is these edges that dominate as N →∞. Therefore, the total edge weight scales as

Θ(dN).

2.3.1.5 Hierarchy Graph, GΠαk

As the hierarchy graph [Fig. 2.6(e)] is built recursively, it is easiest to calculate its

properties using recursion relations. We consider a graph that has k levels to it, so that

given a base graph G and n = |G|, then the overall graph has nk nodes.

First, we calculate the unweighted diameter of a k-level hierarchy, which we denote

by δ
(
GΠαk

)
. Since all sub-hierarchies are rooted at their first vertex, we will need to keep

track of the eccentricity of the root node, which we denote by ε(F) for any subhierarchy

F . The eccentricity of any graph node is defined as the maximum distance from that node

to any other node in the graph F . Here, we fix ε(F) to be the root eccentricity for the

graph in question.

Now, we write recursion relations for two quantities, the unweighted diameter

δ(GΠαi) of an i-level hierarchy for some intermediate i, and the eccentricity ε(GΠαi)

45

of the top-level root node of the current i-level hierarchy.

Consider a diametric path in an i-level hierarchy. This path must ascend and

descend the entire hierarchy. That is, using the notation of Sec. 2.2.2.3, two maximally

separated qubits have addresses that are different in their first digit. Such a path can

always be partitioned into 3 disjoint pieces, the terminal two of which each lie in some

(i − 1)-level subhierarchy, while the middle piece lies in the current top (i.e. i-th) level.

These three pieces must be independently maximal, since the path is diametric. The

middle piece maximizes to the diameter of the top-level graph, which is simply δ(G).

The two sub-level pieces each maximize to the root eccentricity of the (i − 1)-th level

subhierarchy, which is precisely the quantity ε(GΠα(i−1)). Therefore, our first recursion

reads

δ(GΠαi) = 2ε(GΠα(i−1)) + δ(G). (2.29)

The i-th level root eccentricity may be found by a similar argument. Partition the most

eccentric path (starting at the top level root node) into two pieces, one which lies at the top

level, and the other which lies exclusively in the lower levels. Maximizing both pieces,

one gets

ε(GΠαi) = ε(GΠα(i−1)) + ε(G). (2.30)

Solving the second relation, we get ε(GΠαi) = iε(G). By substitution, the first recursion

has the solution

δ(GΠαk) = 2(k − 1)ε(G) + δ(G). (2.31)

Since the total number of levels is given by k = lognN , and the graph diameter is no

46

greater than twice the eccentricity of any node, we conclude that the diameter scales

as Θ(ε(G) lognN) for a general graph G. If we specifically examine the case when G

is a complete graph of order n, δ(G) = 1 and ε(G) = 1, and the exact expression is

δ
(
GΠαk

)
= 2 logn(N)− 1.

Next we calculate the maximum degree. Again, we proceed by recursion. Iterating

the hierarchical product to some level i can be viewed as attaching a copy of the graph

GΠα(i−1) to every point in the graph G. Therefore, the degree of every root node in the

(i− 1)-level subhierarchies increases by the degree of the corresponding node in graph

G. The maximal increase achievable thus is the maximum degree ∆(G) of graph G.

Since the root node for an i-level subhierarchy has i distinct copies of G attached to it, its

degree is given by i · deg (g1), where g1 is the root node of G. Then, the i-level maximum

degree can be expressed as

∆(GΠαi) = max
{

(i− 1) deg (g1) + ∆ (G) ,∆(GΠα(i−1))
}

(2.32)

. . . = max
0≤j≤i−1

{j deg (g1) + ∆(G)} (2.33)

= (i− 1)deg (g1) + ∆ (G) , (2.34)

where the second step was obtained by recursion. For a general G, this gives the

maximum degree scaling as ∆(GΠαk) = Θ(lognN). For KΠαk
n , the root degree and

the maximum degree of the base graphKn are both n−1, so ∆(KΠαk
n) = (n−1) lognN .

Now we consider the total edge weight of the hierarchy. We compute this by a

recursion relation, first by duplicating the existing edge weight at i − 1 levels by n (the

number of smaller hierarchies we must bring together) and then adding new edges. If the

47

edges at level i have weight αi, we can write this as:

w(GΠαi) = nw(GΠα(i−1)) + αiw(G). (2.35)

By counting the number of subhierarchies with different weights, we find the following

form for the total edge weight of the weighted hierarchy:

w
(
GΠαk

)
= w(G)

k∑
i=1

αi |G|k−i . (2.36)

This can be verified by checking that it satisfies the recursion relation Eq. (2.35). If we

now specialize to the case where G = Kn and αi = αi−1, we find

w
(
KΠαk
n

)
=
n(n− 1)

2

k∑
i=1

αi−1nk−i. (2.37)

This behavior can be broken into three regimes. For α = n, the sum is constant, and the

overall scaling is Θ(nN lognN). Otherwise, we can perform the geometric sum to obtain

w
(
KΠαk
n

)
=
n(n− 1)

2

nk − αk
n− α . (2.38)

Here, the scaling will depend on the relative size of n and α. For n > α, the first term

in the numerator dominates, and w
(
KΠαk
n

)
= Θ(nN). Otherwise, we can write αk =

N logn α and find w
(
KΠαk
n

)
= Θ(nN logn α).

Finally, we calculate the weighted diameter of a k-level hierarchy δw(GΠαk),

just as for the unweighted diameter, by solving recursion relations for the quantities

48

δw(GΠαi) and εw(GΠαi), which are, respectively, the weighted diameter and weighted

root eccentricity for an i-level weighted hierarchy. Here, note that the top level (at any

intermediate stage i) is weighted by αi. Therefore, the recursion for the weighted diameter

is modified to

δw(GΠαi) = 2εw(GΠα(i−1)) + αiδw(G). (2.39)

Similarly, the recursion for the weighted eccentricity becomes

εw(GΠαi) = εw(GΠα(i−1)) + αiεw(G), (2.40)

which has the solution εw(GΠαi) = εw(G)
i∑

j=1

αj . Finally, we have

δw(GΠαk) = 2εw(G)
k−1∑
j=1

αj + δw(G)αk. (2.41)

For G = Kn and αi = αi−1, this becomes:

δw(KΠαk
n) = 2

k−1∑
i=1

αi−1 + αk−1 (2.42)

=
αk + αk−1 − 2

α− 1
. (2.43)

Therefore, the scaling of the weighted diameter with N has two regimes, depending on

α. For α < 1 the geometric sum converges as i → ∞ to 2
1−α . This means that for

α < 1, a constant time suffices to traverse the entire hierarchy no matter how large it is.

For α = 1 the weighted diameter is equal to the (unweighted) diameter, which we have

already computed. For α > 1, δw scales as αk−1 = N logn α/α ∼ N logn α. Note that the

49

last scaling only applies if α does not scale with n. Since n > 1 and α > 1, this exponent

logn α is always positive. Therefore, the total edge weight is asymptotically always either

constant (for α < 1) or growing (for α ≥ 1), as expected.

2.3.1.6 Truncated Hierarchy, GΓαk

Finally, we look at how the results above are modified if we use the truncated

hierarchical product discussed in Sec. 2.2.2.5 [Fig. 2.6(f)]. Although many of the

calculations in terms of the number of levels k are similar to those for the non-truncated

hierarchy, it is no longer the case that k = lognN exactly. In order to compare graphs

fairly, we will need to recalculate the order of GΓαk so that results in this section can be

written in terms of the total number of nodes, N .

Under the node addressal scheme of Sec. 2.2.2.3, the nodes of a truncated hierarchy

are in one-to-one correspondence with base-n strings of length k that only have trailing

zeros. As before, a 0 label points to a root node, but since root nodes do not bear

subhierarchies due to truncation, all subsequent labels are forced to be 0. In other words,

we only label nodes using strings of the form (l1l2 . . . li00 . . . 0) for some i ≤ k, and

lj 6= 0 for all j ≤ i. The number of such strings with i nonzero labels followed by (k− i)

zero labels is (n− 1)i. Therefore, the total number of nodes is

N =
k∑
i=0

(n− 1)i. (2.44)

Since N = Θ
(
(n− 1)k

)
, many quantities of a truncated hierarchy with a base graph of

order n+1 have the same scaling with the number of nodesN as those for a non-truncated

50

hierarchy with a base graph of order n.

In terms of the number of levels k, the maximum diameter will be proportional to

k, just as it was in Sec. 2.3.1.5. It follows that the diameter scales with the total number

of nodes as δ = Θ
(
logn−1N

)
for a truncated hierarchy.

On the other hand, truncation offers a large improvement in the maximum degree

of the hierarchy. As discussed in Sec. 2.2.2.5, the maximum degree of the truncated

hierarchy is ∆(GΓαk) = 2∆(G), which is constant in N .

The edge weight recursion relation is simply n− 1 copies of the current graph and

then new, additional edges:

w(GΓαi) = (n− 1)w(GΓα(i−1)) + αiw(G). (2.45)

This is identical to the recursion relation for the standard hierarchy, Eq. (2.35), except that

there are now only n − 1 copies, and also, for a given number of qubits N , the number

of levels k may be different by constant factors and terms. Thus, the only modification

to the recursion relation is to replace n with n − 1, and the solution of the relation is

otherwise identical. This means that none of the asymptotic scaling with k is affected,

and the scaling with N is only affected by changing the total number of levels required to

construct a graph of N nodes.

The recursion relation for weighted diameter is similar to Eq. (2.39). Due to

truncation, one needs to make a careful comparison of paths that do or do not terminate at

the root node of the top level, but in any case the weighted diameter’s scaling with k is the

same as the non-truncated weighted diameter’s scaling. The weighted diameter scaling

51

with N can thus be found from Eq. (2.43), using the appropriate value of k for truncated

hierarchies with N nodes.

2.3.2 Choosing Among Graphs

2.3.2.1 Graph Embeddings

The long list of comparisons summarized in Table 2.2 can make it difficult to see

exactly when different graphs are preferable. To make our calculations more concrete,

we would like to compare concrete scenarios for the connection of qubits arranged on a

grid in d dimensions. Specifically, in each dimension (d = 1, 2, and 3), we examine a

hierarchy that is embedded into the grid, comparing its properties to the same grid but with

nearest-neighbor connections. We consider building modules where each small module

is a complete graph of size n, laid out in cubes on the grid so that the side-length of the

cube is n1/d. The d = 1 and d = 2 cases with n = 2d are illustrated in Fig. 2.7.

As shown, the length of an edge must increase by a factor of n1/d (2 in Fig. 2.7)

at every level of the hierarchy in order to make these hierarchies possible. Therefore,

to determine the total length of wire used, we can use a cost weight with α = n1/d.

Keeping factors of N only, Table 2.2 shows that for d = 1, we expect a total cost weight

Θ (N lognN), while for the higher-dimensional cases we expect a total cost weight Θ (N)

1. For the d-dimensional grid, this total cost weight is always Θ(N).

Now, to consider the performance of the two graphs, we must fix a separate scaling

factor for the time weight, β. There are several options which might be reasonable

1If, for the application at hand, a planar graph is required, cycles such as Cn can yield the same scaling.

52

Figure 2.7: An illustration of the embedding of a hierarchy on a (a) one- or (b) two-dimensional
lattice of qubits. In both cases, the length of an edge doubles at every level of the hierarchy, but
the scaling in total edge length used changes from Θ(N log2N) to Θ(N) when going from 1 to 2
dimensions. In d = 3, a similar hierarchy with doubling length scales connects modules of eight
qubits.

for different physical applications. If β = 1, i.e., all links act identically in terms of

time required to traverse them, then the weighted diameter of the hierarchy is simply

Θ(lognN). Another option would be to take β = α, i.e., to assume that links take as

long to move through as they are long. In this case, we find that the hierarchy’s weighted

diameter scales as Θ
(
N1/d

)
, meaning that the hierarchy and nearest-neighbor graphs

match in performance.

We may also want to allow hierarchies to make use of the “fat tree” concept to

produce a better-performing graph [73]. Suppose that we allow ourselves to “spend more”

on higher-level links, causing their cost weight to increase with a factor α, but improving

their performance so that the time weight scales with the factor β = 1/α. In this case, the

question is what range of α allows for the hierarchy to perform better than the nearest-

53

neighbor grid (lower time-weighted diameter) for less cost (lower total edge cost weight)?

(Note that this cost weight includes any contribution from “lengthening” wires at hire

levels of the hierarchy.)

To answer the first, we compare the two asymptotic diameter scalings,Nmax(0,logn 1/α)

and N1/d. This suggests that if α ≥ n−1/d, the hierarchy will allow for faster traversal

than the nearest-neighbor grid. However, we wish to avoid causing the hierarchy to have

a total cost weight that scales worse than Ω(N), which requires logn α < 1. We find that

a winning hierarchy can be constructed if α lies in the range α ∈
[
n−1/d, n

)
. The optimal

α is as large as possible but less than n; at that point an additional logarithmic factor is

introduced to the total cost weight scaling.

In these cases, we have not allowed the nearest-neighbor grid to modify the weight

(either kind) of its links. This is because any modification in its cost or time weight enters

simply as a constant factor; if the individual links have weight c instead of 1, the overall

weighted diameter is just cN1/d while the total cost weight is just cN . Of course, one can

apply different constants to each figure of merit, or apply c to one and 1/c to the other.

In order to make the nearest-neighbor grid match the performance of the hierarchy, the

unit-length time weight would have to be N logn(α)−1/d while the unit-length cost weight

must not scale with N .

2.3.2.2 Pareto Efficiency

Our calculation of various graph parameters suggests that the hierarchy architecture

offers significant advantages over others. One way to make this comparison more exact

54

is to appeal to the economics concept of Pareto efficiency, which is used to designate

an acceptable set of choices in multiparameter optimization [79]. A choice is Pareto

efficient if switching to a different choice will cause at least one parameter to become

worse. Suppose we eliminate all constants to focus only on the scaling with N for three

parameters: weighted diameter, maximum degree, and total edge weight. By removing

these constants, we assume that the small multiplicative factors they provide will not

influence decision making. For simplicity, we will assume that both cost and time weights

scale with the same factor, α.

Figure 2.8: An example of a porcupine graph as defined in Ref. [80], in this case, K4 Π S4.

For comparison, one could ask: what minimum number of edges is required for a

graph on N nodes to have maximum degree ∆ and diameter δ? Reference [80] answers

this optimization question partially, and constructs what are known as porcupine graphs

which achieve the optimum, illustrated in Fig. 2.8. We observe here that qualitatively,

porcupines are modular, since they may be described by attaching trees to the nodes of a

complete graph. In particular, the graph K√N ΠS√N is a porcupine graph that achieves a

55

Graph δw ∆ w
KN const. N N2

SN const. N N
CN N const. N
Square grid N1/d const. N

? K√N Π S√N const.
√
N N

? KΓαk
n+1

{
α 6= 1 N logn α const. N
α = 1 lognN const. N

Table 2.3: An illustration of the scaling with N of three key parameters to be used in Pareto
optimization. Here δw is the weighted diameter, ∆ is the maximum degree, and w is the total
edge weight of the graph. A star (?) has been placed next to the two graphs we find to be Pareto
efficient. We have also included the α = 1 (unweighted) hierarchy in the final row, as it has a
different scaling for the weighted diameter. Our Pareto efficiency judgment is made assuming
n1/d ≥ α ≥ 1.

diameter δ = 3 and a maximum degree of ∆ = 2(
√
N − 1) with the minimal number of

edges.

We summarize the scalings of these graphs in Table 2.3. Assume that n1/d ≥ α ≥

1. In this case, we can find the Pareto-efficient solutions by noting which options can

be eliminated. We see that KN is strictly worse than SN and can be eliminated; SN

is then dominated by the porcupine. CN is dominated by the square grid, which has

identical scaling of total weight and degree but lower diameter. The square grid, in turn,

is dominated by the hierarchy due to the assumptions we have made on α. This means that

the two Pareto-efficient choices in this case are the truncated hierarchy and the porcupine

graph. If we chose any option besides these two, we could improve the scaling with

respect to N without any trade-off by switching to one of them. While this framework

does not offer a decision rule to choose between the porcupine and KΓαk
n , the latter is

clearly preferable if our aim is to create a modular quantum system that does not rely

on a few centralized nodes. We stress that this optimization procedure is only intended to

evaluate the quantities and graphs introduced, and the Pareto-efficient choices will change

56

if other figures of merit or other graphs are included in the optimization.

2.3.2.3 Optimality of diameter for hierarchical graphs

The use of KΓαk
n may be further motivated via the degree-diameter problem [81]

(for a survey, see Ref. [82]). Given a graph with a maximum allowed degree ∆ on each

node and diameter no greater than δ, the degree-diameter problem asks for the maximum

number of nodes N(∆, δ) that such a network could hold. This problem is practically

well-motivated in the design of networks, and may be answered for special classes of

graphs. The Moore bound, which is a bound for general graphs, states that the number

of nodes N is at most ∆(∆−1)δ−2
∆−2

. This means that for a constant maximum degree ∆ ≥

3, the diameter satisfies δ = Ω(logN), meaning that hierarchical graphs have optimal

diameter up to a constant factor. Tighter bounds on the number of nodes may be shown,

for instance, when the tree-width of the graph is bounded. Ref. [83] shows that graphs

with small tree-widths t and an odd diameter δ satisfy

N (∆, δ; t) ∼ t (∆− 1)
δ−1
2 . (2.46)

As discussed towards the end of Sec. 2.2.2.1, hierarchies have low tree-widths. In

particular, the tree-width of the truncated hierarchy KΓαk
n is at most n − 1. Next, the

diameter of the truncated hierarchy KΓαk
n is δ(k) = 2k − 1 (which is odd), and the

maximum degree is ∆(k) = 2(n− 1). Comparing the number of nodes in this hierarchy

57

N(k) to the node capacity N (∆(k), δ(k);n− 1) as in Eq. (2.46), we get

N(k)

N (∆(k), δ(k);n− 1)
&

nk

(n− 1) (2n− 3)k−1
. (2.47)

Keeping the total number of nodes N fixed, consider two limits: one, a shallow

hierarchy in which the number of levels k is O(1), and two, a deep hierarchy, in which

the size n of the base graph is O(1) [i.e., k = O(logN)]. We see that when the hierarchy

is shallow, the right side of Eq. (2.47) is Θ(1), which indicates optimality. For a deep

hierarchy, the above ratio scales as 2− lognN = N
−1

log(n) , which is polynomially suboptimal.

However, when n = 3, the ratio in Eq. (2.47) is again Θ(1), and the truncated hierarchy

KΓαk
3 is degree-diameter optimal in this case.

2.4 Entangled State Construction

2.4.1 Setup

Although some of the graph properties calculated in the previous section give a

heuristic sense for the capabilities of the hierarchical graph versus the nearest-neighbor

or all-to-all graphs, we would like to examine their performance directly in terms of a

quantum information processing task. The task we have chosen as a benchmark is the

creation of a many-qubit GHZ state. Since this entangled state is difficult to create

across long distances when using nearest-neighbor interactions, we hope that it can

serve as a useful yet basic benchmark for processing quantum information with unitary

evolution [47]. As shown in Ref. [47], preparation of a GHZ state also provides a means

58

of transferring a state across the graph. Thus, the results of this section also bound

state transfer time. However, in this work, unlike Ref. [47], we focus on the use of

discrete unitary operations (gates) rather than Hamiltonian interactions. This means that

we cannot take advantage of the many-body interference which provided a speed-up in

Ref. [47].

Using GHZ state creation as a benchmark for potential quantum architectures

allows us to use physical limitations (represented by the Lieb-Robinson bound) to place

computational limits on information processing. The GHZ state is directly useful on its

own [45–47], but even in systems which do not directly produce the GHZ state, it is likely

that quantum operations will require the creation of long-range correlations between

distant sites. For example, the same physical bounds which govern the creation of the

GHZ state also restrict the speed at which topological order can be produced [48]. We

focus on the GHZ state as an easy-to-analyze example for the problem of creating these

nonlocal correlations, but we stress that our results generalize to any state which possesses

non-local correlations of the kind whose creation is limited by the Lieb-Robinson bound.

We adopt a framework in which every vertex of the graph represents one logical

qubit, while an edge of the graph represents the ability to perform a two-qubit gate

between nodes. For the purposes of this work, we assume that we can ignore single-

qubit operations, instead focusing on the cost imposed by the required two-qubit gates

between nodes.

59

2.4.2 Analytical Results for Deterministic Entanglement Generation

In order to create the GHZ state, we assume that we begin with all qubits in the state

|0〉 except for one qubit that we place in the initial state |+〉. By performing controlled-

NOT operations between this qubit and its neighbors, a GHZ state of those qubits is

created. The state can be expanded by continuing to use further CNOT operations to

expand the “bubble” of nodes contained in the GHZ state until it eventually spans the

entire graph. For state transfer, we instead assume the initial state |ψ〉 to be transferred

sits on one qubit, which is then transferred through the graph using SWAP operations

until it reaches its destination.

We first consider a graph which has been assigned time weights, so that a gate

between two linked edges can be performed deterministically in a time given by the

weight of the edge between them. We assume that one node can act as the control qubit for

several CNOT operations at once. Therefore, according to our protocol above, the time

tGHZ required to construct the GHZ state is found by identifying the qubit that will take

the longest to reach from the initial qubit by hopping on the graph. A similar argument

holds for the state transfer time.

This implies that a GHZ state can be created, or a state transferred, in time that

scales like the (time-)weighted eccentricity of the node we choose as the initial |0〉 + |1〉

state. However, if we take the further step in our analysis of maximizing over weighted

eccentricities (identifying the worst-case starting node), then the time will simply be

the weighted diameter of the graph as calculated in the previous section. Note that the

difference between the best-case weighted eccentricity (the weighted graph radius) and

60

the worst-case weighted eccentricity (the weighted graph diameter) over all nodes is at

most a factor of two – if we look at the midpoint of the path that realizes the graph

diameter, its distance to the endpoints of the path is bounded by the radius – so from the

perspective of how this time scales asymptotically with N , the two are interchangeable.

2.4.3 Numerical Results for Probabilistic Entanglement Generation

As shown in the previous subsection, in a deterministic setting of entanglement

generation where a gate between two nodes of our graph H can be performed in

fixed time, the time required to create a GHZ state is equal to the weighted diameter

δT (H). However, in many situations in long-distance quantum information processing,

probabilistic or heralded methods might be used instead. We might suppose that, in

a small time step, the network succeeds in performing a desired two-qubit gate with

probability p (and that we know whether the gate succeeded or not). Upon failure, one

can try performing the gate again in the next time step without having to rebuild the state

from the beginning. In this setting, we expect that the scaling will likely be similar to

the deterministic case but more difficult to calculate exactly. Fortunately, it is easy to

re-interpret the meanings of the edge weights to account for this.

The main complication arising from the inclusion of unitaries that do not get

completed in a fixed amount of time is that multiple paths between two nodes can all

contribute to the total probability that entanglement has been produced, making it a harder

problem to solve exactly. However, we can turn to numerical simulation to get an idea of

the behavior. In the following, we define a new edge weight called the probability weight,

61

pij , which is the probability of success of edge (i, j) in one time step.

The algorithm for simulating the creation of a GHZ state is as follows:

• At each time step t, identify the subgraph F of nodes that have already joined the

GHZ state.

• For each edge between a GHZ node i ∈ F and a non-GHZ node j /∈ F , identify

the probability edge weight pij . With probability pij , allow node j to join the GHZ

state in the current time step, t.

• Once all edges have been tested, repeat the procedure for the next time step on the

new, possibly larger, set of GHZ nodes.

A single number p0 is chosen as the base probability, so that the probability weights

on the lowest level are p0, and edges on the i-th level of the hierarchy succeed with

probability p0α
i−1. Note that we must fix α < 1. As a first step toward evaluating the

performance of a graph, we estimate its time weights as wij = 1/pij , the time required to

perform a two-qubit unitary on average. The overall estimate of the expected time taken

is then δT/p0, where δT is the time taken for the deterministic case with time weights

scaling by a factor β = 1/α at each level. We find that this predicts very well the rate

at which the GHZ state can be constructed over a wide range of α values (Fig. 2.9). The

expected time remains Θ
(
N logn(1/α)

)
.

For graphs with multiple potential paths between two nodes, such as a two-

dimensional grid, the expected time is not simply the deterministic time scaled by the

extra time factor the probabilistic setup requires in each step. We can however still bound

the expected time to build the GHZ state E[tGHZ] above and below for a graph H . We

62

will bound it above by considering a modified graph in which the only path between

the initial qubit and the qubit farthest from the starting point has distance dw(H). Such

a path completes in time dw(H)/p0 on average. Since H has strictly more paths than

this, the expected time will be lower. However, the shortest path between the initial and

final qubits has total distance dw(H), which would take time dw(H) to complete even if

p0 = 1 and all gates were deterministic. Therefore, no path can finish faster than this,

and the expected outcome over all possible paths cannot improve over dw(H). We can

therefore write the following restriction on the expected time:

dw(H) ≤ E [tGHZ] ≤ dw(H)

p0

, (2.48)

where E[·] denotes the expected value. This implies E [tGHZ] = Θ (dw(H)). Therefore,

although the prefactor is difficult to calculate, we can tell that the time required to

complete the creation of a GHZ state on the nearest-neighbor graph with d = 2 is

Θ(
√
N). This scaling implies that the condition for the hierarchy to outperform the

nearest-neighbor grid in 2D is α ≥ n−1/2, which is reflected in Fig. 2.9.

Using the GHZ-creation time and state transfer as examples, we can see many of the

advantages of hierarchical graphs as network topologies. Such architectures are able to

rapidly incorporate a very large number of qubits (exponential in the number of hierarchy

levels), while the time-weighted diameter (and thus communication time) grows linearly

with the number of levels. Since the weighted diameter is not substantially changed even

if we use the truncated hierarchical product of Sec. 2.2.2.5, these benefits can also be

realized in that setup.

63

101 102

Number of Qubits

101

102

103

S
ta

te
 C

o
n
st

ru
ct

io
n
 T

im
e

=0.5

=0.9

NN

Weighted Diameter / p0

N

Simulations

Figure 2.9: Graph-theoretic predictions and simulation of tGHZ for the hierarchyKΠαk
3 at various

α, and a two-dimensional nearest-neighbor (NN) grid; p0 = 0.1. The
√
N fit shows the scaling of

tGHZ for the nearest-neighbor case, with a prefactor in the range suggested by the text’s argument.
Note that since n = 3, the crossover for the hierarchy to asymptotically outperform the nearest-
neighbor grid is at α ≥ 1/

√
3 ≈ 0.58, which is seen in the numerical results. Code for generating

this figure can be found at [84].

2.5 Circuit Placement on Hierarchies

A final reason we believe hierarchies could be a useful way to organize modular

quantum systems is that they may be able to take advantage of straightforward methods

for circuit placement. Circuit placement is a problem that arises when a quantum circuit

or algorithm must be translated onto a physical system [85]. Suppose we are given a

specification for a quantum algorithm in the form of a circuit diagram, and we wish to

run that algorithm on a given quantum computer (which presumably has enough quantum

memory to perform that algorithm). In order to translate the circuit into instructions

for our machine, we must identify each algorithm qubit with a machine qubit and then

64

determine how the individual quantum gates can be realized in our machine 2.

Circuit placement is an important part of the quantum software stack, just as the

compilation to machine code is in classical computers. By placing qubits which must

operate on each other often close together in the real-world machine, we can minimize

the amount of time spent performing long-range quantum gates. However, this problem

is generally quite difficult for arbitrary instances and in fact has been shown to be NP-

complete [85].

However, since we are interested in the sub-problem of circuit placement on

hierarchies, it is possible that the hardness results of Ref. [85] do not apply and the

exact solution can be found in polynomial time, just as the problem can be solved

tractably in linear qubit chains [86]. Whether or not an exact algorithm exists, we can

appeal to heuristics to efficiently place circuits as well as possible. Such an approach

is promising because hierarchies are extremely structured with clear prioritization of

clustering between small groups of qubits, which can be recognized in the algorithm and

matched to the physical architecture.

To explain further, we consider the following model. We suppose that we begin

with a weighted circuit graph C with a vertex set VC and an edge set EC , in which an

edge exists between two vertices if there is at least one two-qubit gate between them in

the circuit, with the weight of the edge corresponding to the number of gates. We then

specify a machine graph, M , with vertex set VM and edge set EM , in which each edge

(u, v) indicates that the machine can perform two-qubit gates between u and v.

2We studiously avoid referring to the machine qubits as “physical” in this chapter, as we do not want
to confuse this conceptual distinction with the physical/logical qubit divide in error correction. All of the
qubits referenced in this section are logical qubits in the error-correcting sense.

65

We now seek a mapping f : VC → VM that assigns algorithm qubits to machine

qubits. A mapping f has a total cost found by considering, for every edge in EC between

vertices ci and cj , the shortest-path distance between f(ci) and f(cj) in M , multiplying

that distance by the weight of the edge in C and summing over all edges. Thus, it captures

the total distance that must be traversed by all gates in order to execute the circuit when

the current mapping is used. Reducing this is expected to reduce the amount of time spent

performing SWAP gates in order to connect two distant qubits. Performing this mapping

is an important subroutine in any quantum programming framework, and at least one

existing quantum compiler has a “mapper” phase that takes into account the actual graph

that a program must be compiled onto [87, 88].

Our cost function is a choice made from convenience, and others are possible.

Using this cost function ignores several important aspects of quantum circuits. First, our

cost function does not account for the fact that a different mapping might allow for more

parallelism, since it evaluates the cost of each gate individually. In addition, we take the

circuit graphC as a given, when in fact many different circuits exist for any given quantum

operation. In fact, it is likely that optimization ofC could be performed, possibly by using

the structure ofM itself. A more realistic model for circuit placement may require a back-

and-forth in which a circuit is first placed, then optimized, then re-placed, and so forth. A

more advanced placement algorithm may even permit the swapping of qubits throughout

the circuit, thus optimizing the placement of the quantum algorithm without constructing

a circuit connectivity graph as an intermediate step.

For this chapter, we will ignore these concerns and proceed with a heuristic

approach to circuit placement for hierarchies. We describe our algorithm as “partition and

66

Figure 2.10: Illustration of how we might divide a hypothetical graph into smaller clusters. This
process is repeated many times, recursively.

rotate,” as it requires these two basic subroutines. First, qubits are partitioned into sub-

hierarchies by examining whether they are connected by many gates in C. This process

continues recursively, with each partition being subdivided and so on until every qubit

is identified with its point in the hierarchy. This top-down process is then followed by a

bottom-up process in which each small cluster is rotated so that its most-communicative

qubit is at the root of the sub-hierarchy, and then the partitions themselves are rotated,

and then clusters of clusters, etc. Ideally, this results in a mapping in which every qubit

is (a) placed close to qubits it needs to communicate with and (b) placed in easy access

to other modules if that qubit requires such access. We will now explore in detail these

subroutines and the circuit speed-ups that result. We will place algorithms on a machine

graph M which we take to be defined by KΠk
n for some integer k. Note that we examine

unweighted hierarchies, but these methods can be applied to weighted hierachies as well.

2.5.1 Partitioning

For the first step of our algorithm, we wish to divide the computational graph C

into n subgraphs which are as disconnected as possible. In addition, since we wish to

assign each node in C to physically separate and limited qubit registers, it is important

67

that each of the subsets has precisely |C| /n nodes. This problem is known as balanced

graph partitioning, and the problem of finding the optimal solution is NP-complete for

n ≥ 3 [89]. However, heuristic methods exist which approximate the solution, and are

widely used in the field of parallel computing and circuit design [90]. We have illustrated

this process in Fig. 2.10.

Our method for performing circuit placement on hierarchies relies on a subroutine

that performs balanced graph partitioning. There are many algorithms and software

packages from which to choose. Here, we have used a software package called Metis,

which implements an algorithm called recursive bipartitioning [90].

We begin by supposing that we have the circuit graph C and we wish to identify

groups of |C| /n nodes which have high connection to each other but low connection

outside of the group. This is accomplished by finding a balanced graph partition in which

the weight of the edges connecting each group is minimized. If we call the initial set of all

nodes S, then we wish to identify subsets S0, S1, . . . , Sn. In terms of the addressal scheme

of Sec. 2.2.2.3, all the nodes in set Si will have have digit i in their base-n representation.

In the next section, we will discuss the choice of which digit to assign to each set.

Once the subsets Si are found, partitioning can be run again on that relevant

subgraph, creating n new subsets of this subset. Eventually, every node in the graph

will be identified with a lowest-level module of size n, a next-level module of size n2, and

so forth.

Here we have used a generalized, pre-existing algorithm for graph partitioning. It is

possible that the specifics of this problem, and the possibility of co-designing the precise

quantum circuit implementing the algorithm (and thus C) with the architecture, enable

68

1 3

2

4

1 2

3

4

Figure 2.11: An illustration of how and why the process of rotation works in our circuit placement
algorithm. In this diagram, red links represent gates to be performed (edges in C) and black
ones are available communicative links (edges in M). In the graph C, the qubits 1, 2, and 3 are
all connected, and 3 is connected with 4. These qubits have been correctly placed into clusters
(1, 2, 3) and (4). However, if they are not rotated correctly (see left), the link between 3 and 4 can
become quite long, necessitating a long-range quantum gate. By properly rotating (right), the gate
between links 3 and 4 becomes much shorter, improving the placement.

more specific, better-performing approaches.

2.5.2 Rotation

Drawing partitions between qubits is not enough to fully specify their placement

into a hierarchy. If we consider using the i-digit representation, we can imagine that

partitioning essentially describes the process of deciding, from a set of qubits, which

ones will share a digit in the next level. However, these digits are more than arbitrary

markers, because there is one node in any sub-hierarchy which connects to the hierarchy

above. This node (which we say has digit 0) has privileged access to communication

with other sub-hierarchies. Therefore, in order for our circuit placement to succeed, we

should ensure that the qubit on top of each sub-hierarchy is the one which requires the

most access.

In order to do this, we implement a second subroutine, the “rotate” part of the

algorithm. This is called rotation because, once we know which qubits will be together

69

in a module, we must choose how to orient them relative to the larger modular structure.

Whereas partitioning is top-down (the full graph is broken into small subgraphs which

are then themselves partitioned), rotation is bottom-up. Suppose the modular structure

is KΠk
n . We begin with sets of n qubits and must choose which will be the top of each

smallest instance of Kn. We then take each partition of n instances of Kn and decide

which instance of Kn will connect to the next level up, and so on. This process is

illustrated in Fig. 2.11.

Note that the general structure of our algorithm is to first go down the hierarchy,

partitioning nodes, and then to go up, re-arranging sub-hierarchies in the proper order.

We perform this procedure only once to obtain our circuit mapping.

2.5.3 Results

Now that the placement algorithm is specified, we turn toward examining its

performance on quantum circuits. We consider two separate questions. First, we

investigate whether the algorithm is effective – does it actually reduce, relative to a

random assignment, the amount of distance that must be traversed in a circuit to execute

all the requested gates? Second, we will examine whether the algorithm executes

efficiently on a classical computer. This second point is important because in general

the problem can be solved by brute-force search, but such a search requires a timeO (N !)

to perform (although, as we stated earlier, it is possible that an exact algorithm exists with

a lower time cost for the special case of hierarchies).

To investigate the above concerns, we examine the algorithm’s performance on

70

101 102 103

Number of gates
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

rig
in

al
 c

os
t 81 qubits

243 qubits
729 qubits

Figure 2.12: Plot of the average ratio (total gate distance after partition-and-rotate)/(total gate
distance before) given 100 trials each for different numbers of random gates and random qubits.
Error bars represent one standard deviation. As the number of gates begins to saturate the number
of qubits, the possible improvement from optimization begins to decrease.

random circuits. For each trial, we first generate a random circuit of Ng two-qubit

gates on N total qubits. The precise type of two-qubit gate is irrelevant in this

framework. Likewise, single-qubit gates require no communication overhead, so we do

not consider them. The random circuit then implies a computational graph C, where,

as described above, the vertices represent the algorithm qubits and the edge weights

represent the number of gates that must be applied between each pair of qubits. Once

this computational graph has been generated, we first attempt to map it blindly to the

hierarchy graph, using the addressing scheme of Sec. 2.2.2.3 and an arbitrary order of the

graph C. Then, we apply partition-and-rotate and calculate the new cost function. By

comparing the cost function between these two, we develop an idea of how much long-

range quantum information processing is eliminated by partition-and-rotate. We perform

this several times to build up statistics on average time costs and average improvement.

71

Code which performs circuit placement and generates the profiling figures included in

this section can be found at [84].

In our simulations, we test hierarchies KΠk
3 up to 729 qubits (k = 6). We find that

as gates are added, the improvement over the initial cost is decreased. This is sensible,

because as more randomly placed gates are present, different node mappings become

more similar. Such an effect will likely not be present for quantum algorithms which

do not have their gates placed randomly. For cases in which the number of gates is

significantly fewer than the number of qubits, partition-and-rotate is able to significantly

reduce the cost function. We find that 100 gates can be placed on a 729 qubit hierarchy

with a total cost less than 20 % of the original on average. When 1000 gates are placed on

a 729 qubit hierarchy, the final cost is still only 40 % of the initial one. Results for KΠ4
3 ,

KΠ5
3 , and KΠ6

3 can be seen in Fig. 2.12.

101 102 103

Number of gates
10 1

100

Ru
n

tim
e

of
 p

ro
gr

am
 (s

) 81 Gates
243 Gates
729 Gates

Figure 2.13: Average run times over 100 trials for partition-and-rotate on a 2015 MacBook Pro
with a 2.6 GHz processor. Each line represents an increasing number of gates for a constant circuit
size as measured by the number of qubits. Error bars represent one standard deviation.

Next, we examine the time required to place such a circuit. Our code, most of which

72

101 102 103

Number of qubits
10 2

10 1

100

Ru
n

tim
e

of
 p

ro
gr

am
 (s

) 10 Gates
100 Gates
1000 Gates

Figure 2.14: Average run times over 100 trials for partition-and-rotate on a 2015 MacBook Pro
with a 2.6 GHz processor. Each line represents an increasing number of qubits for a constant
number of gates. Error bars represent one standard deviation.

is written in Python3 but which uses a C implementation of Metis for graph partitioning,

can place 1000 gates on a 729-qubit hierarchy in roughly two seconds when running on

a 2015 MacBook Pro. Although the algorithm seems naturally suited to parallelization,

our implementation uses only a single core. Our current implementation appears to scale

with the number of qubits as O(N) and not to depend on the number of gates included

at all once there are a sizable number of gates. We illustrate these two relationships in

Figs. 2.13 and 2.14. These times compare favorably to the times reported in Ref. [85],

with much optimization still possible in our implementation.

Note that using random graphs as described above means that our results may not

be valid for more general quantum algorithms. It is possible that practical quantum

algorithms have structure that makes them either particularly amenable or particularly

difficult for partition-and-rotate algorithms to place, depending on the actual algorithm

being examined.

73

2.6 Conclusions and Outlook

In this chapter, we have developed the theory of hierarchies using the existing

binary operation of the graph hierarchical product. We have shown that hierarchies

may be a promising architecture for large quantum information processing systems. To

demonstrate this, we analyzed both properties of the underlying graph (such as diameter,

maximum degree, total edge weight) as well as the time it would require to perform a

representative quantum information process (constructing the GHZ state/state transfer) in

both deterministic and probabilistic settings. We have also computed and tabulated these

properties for many other graphs which appear as potential architectures, for comparison.

We have shown that, for much of parameter space, hierarchies have favorable scalings in

cost and performance with the total number of qubits N compared to these competitors.

Also, since hierarchical graphs are hyperbolic, they share many of the advantages of

hyperbolic graphs such as efficient routing schemes [91], network security [92], and node

addressal [93].

We have also presented a conceptually simple circuit placement algorithm which

allows for simple optimization using existing graph-partitioning software packages. Our

partition-and-rotate algorithm scales well with the number of qubits and gates in the

circuit and reliably reduces the total distance that needs to be traversed by random

quantum circuits, which we verified by simulation.

One significant limitation of our analysis in this chapter has been that we remained

confined to unitary operations. Non-unitary operations (for instance, measurements

which are then fed forward to choose future unitary operations) are capable of establishing

74

long-range correlations like those present in the GHZ state much more quickly than

unitary ones if measurements and classical communication are fast. In the future, we

hope to extend our results into non-unitary domains [94].

In addition, we have made the assumption that the primary way in which quantum

architectures will differ is the speed with which two qubits can communicate (as

represented by our time weights on edges). Another important case might be one in which

the primary way edges are enhanced is by improving bandwidth or duplicating nodes

to provide parallel routes rather than affecting gate speed directly. For some schemes,

our abstract notion equating the time of a two-qubit gate with the edge weight may

still be a useful tool of analysis, but in other cases bandwidth and speed may not be

interchangeable. We intend to undertake the analysis appropriate for this case in a future

manuscript [94].

In this chapter, we limited ourselves to consideration of a few quantum processes

(generation of a large entangled state, or transfer of a state across the graph), which

might not be representative of other, more general distributed quantum information tasks.

Some algorithms, such as Shor’s algorithm, are known to be able to run with little

additional overhead even on one-dimensional, nearest-neighbor graphs [95]. Therefore,

when selecting an architecture for a practical quantum computer, care will need to taken

to select the proper benchmarking task.

In future work, we hope to look at a wider variety of quantum circuits and use those

to better benchmark different modular architectures. In addition, we hope to gain a better

understanding of the treatment of probabilistic links for general graphs. For instance, as

we discussed briefly when assessing the star graph SN , one real concern in a networked

75

setting is whether some parts of the network will form bottlenecks. To analyze the impact

of this in a general way will require a better understanding of realistic quantum algorithms

and the demands they place on a network. Analyzing more complex quantum algorithms

could also shed light on the performance of partition-and-rotate placement algorithms in

realistic settings when sequencing and scheduling also enter into consideration.

Finally, in addition to asking ourselves how current circuits and algorithms can be

executed on highly modular systems, we also hope to explore the possibility that highly

modular architectures open up new possibilities for parallelized quantum algorithms.

For instance, Ref. [96] shows that quantum fan-out gates can be used to parallelize

gate sequences, decreasing the time to perform an algorithm at the cost of requiring

additional memory qubits. Hierarchies could implement such schemes by using high-

level connections to perform the initial fan-out gates and then performing the various

parallelized operations in each individual module.

76

Chapter 3: Nearly optimal time-independent reversal of a spin chain

Quantum information transfer is a fundamental operation in quantum physics, and

fast, accurate protocols for transferring quantum states across a physical system are likely

to play a key role in the design of quantum computers [97, 98]. For example, quantum

information transfer can be used to establish long-range entanglement and is also useful

for qubit routing in quantum architectures with limited connectivity [15, 99]. Extensive

work has studied the implementation of various information transfer protocols, often via

Hamiltonian dynamics on spin chains [100].

Information transfer in Hamiltonian systems is governed by the spread of

entanglement and has close links to Lieb-Robinson bounds [101], entanglement area

laws [102], and algorithms for quantum simulation [103]. Fundamental limits to

the rate of entanglement growth are set by bounds on the asymptotic entanglement

capacity [104–107] and more recent small incremental entangling theorems [108–111].

We show that these limits can also be used to obtain lower bounds on the execution time

of Hamiltonian protocols for information transfer. This raises the question of whether a

protocol can achieve optimality by saturating the bound.

Quantum state transfer studies protocols for moving qubits through a spin

chain [112]. Long-range interactions can be used to speed up protocols [113], but here

77

we consider only nearest-neighbor interactions. State transfer protocols usually assume

the intermediate medium to be in a known initial state [114–117] or allow it to change in

an unknown or non-trivial manner [118, 119]. Such protocols are not directly applicable

when some or all spins in the chain contain data qubits that need to be transferred or

maintained.

Protocols for state reversal, also known as state mirroring [120], take steps towards

addressing this issue. State reversal reverses any input state on a spin chain about

the center of the chain. Specifically, with qubit labeling 1, 2, . . . , N , state reversal

corresponds to the unitary

R :=

bN
2
c∏

k=1

SWAPk,N+1−k (3.1)

up to a global phase, which is independent of the state. State reversal is potentially a

useful subroutine for the more general task of qubit routing, where we wish to apply

arbitrary permutations to the qubits. Early results in this area require the state to be in

the single-excitation subspace [121] or introduce phases in the final state that depend on

a non-local property such as the number of qubits in state |1〉 [120, 122]. The protocol

in [120] introduces a phase (−1)M(M−1)/2 that is a function of the excitation number M

(mod 4). This is non-trivial to correct: Consider the task of signaling the value of the left

bit to the right end of a chain with zeros in the bulk. A right edge state prepared in |+〉

is flipped to |−〉 by the phase correction procedure, conditioned on the value of the left

bit. By the signaling lower bound, we incur a time over- head linear in N to correct these

phases and implement a reversal for a general state. These limitations were later removed

by time-dependent protocols for state reversal [123–125]. Concepts from Refs. [123,124]

78

can also be used for translation-invariant universal quantum computation by, for example,

modelling a quantum cellular automaton [123, 126–128].

In this chapter, we propose the first time-independent protocol for state reversal

using nearest-neighbor interactions. We show that the execution time of our protocol is

nearly optimal, comparable to the time-dependent protocol given in Ref. [123]. However,

as our protocol does not require dynamical control or intermediate measurements but

only engineered nearest-neighbor couplings, we expect it to be more experimentally

feasible on near-term quantum systems such as superconducting qubits [129]. Through

simulations, we also find that the protocol has reduced error scaling in system size to

noise by static disorder caused by imperfect fabrication (see Sec. 3.6). Therefore, we

expect that the protocol presented here has applications in noisy, connectivity-limited

quantum devices at intermediate scale.

Before presenting our state reversal protocol in more detail, let us elaborate on

the claim that it is nearly optimal—specifically, that it has an evolution time within a

factor 1.502(1 + 1/N) of the shortest possible. In order to compare fairly between the

runtimes of Hamiltonian protocols (such as the one we will introduce shortly) and gate-

based protocols (such as SWAP-based routing algorithms), it is necessary to standardize

the notions of time in the two models. Time in a gate-based model is measured by circuit

depth, which implicitly assigns a time of 1 to one application of a gate. However, it is

possible to provide a rigorous lower bound on the evolution time required to simulate two-

qubit gates using a two-qubit Hamiltonian whose spectral norm is bounded by 1 [130].

Therefore, for any nearest-neighbor spin Hamiltonian H , a time scale follows from a

normalization that limits the strength of every two-qubit interaction but allows fast local

79

operations. Up to local unitaries, we can write any two-qubit Hamiltonian in the canonical

form [130]

K :=
∑

j∈{x,y,z }

µjσj ⊗ σj , (3.2)

where µx ≥ µy ≥ |µz| ≥ 0 and σj are the Pauli matrices. We impose the normalization

condition that ‖K‖ =
∑

j |µj| ≤ 1 for all interactions, where ‖·‖ is the spectral norm.

Under this normalization, a SWAP can be optimally implemented in time 3π/4 [131], and

our protocol achieves state reversal in time

tN := π
√

(N + 1)2 − p(N)/4 , (3.3)

where p(N) is the parity function, which is 0 when N is even and 1 when N is odd.

This is equivalent in time to a SWAP gate circuit of depth ∼N/3. As state reversal

using only SWAPs requires depth at least N − 1 [132], our protocol is faster than

any SWAP-based protocol by an asymptotic factor of 3. Similarly, we can compare

to other time-independent Hamiltonian protocols that use nearest-neighbor interactions:

[114] implements state transfer in time Nπ/4 and [120] implements state reversal in

time Nπ/2 but introduces relative phases in the state as mentioned earlier. Our time-

independent protocol (and some time-dependent protocols [123–125]) thus improve upon

these previous protocols for state transfer and state reversal except for a subleading term.

We lower-bound the time for state reversal, which can generate entanglement

across a bipartition, by using bounds on the asymptotic entanglement capacity in a

more general model [105, 107]. The asymptotic entanglement capacity bounds the

80

1.0

0.0

N-1 N N+1.(N-1)/20 1 2

J,h

R = e-iH(J,h)tN

Figure 3.1: The state reversal operation R (depicted by arrows) and an illustration of our time-
independent protocol to implement it. The nearest-neighbor σkxσ

k+1
x couplings (Jk, dashes) and

on-site σkz fields (hk, dots) are plotted on the y-axis. Sites 0, N + 1 are ancilla qubits, which are
not part of the protocol and are used purely in the analysis.

rate at which entanglement can be generated by any evolution of a given bipartite

Hamiltonian interspersed with arbitrary local operations and classical communication

(LOCC) and with arbitrary finite local ancilla spaces. We give an explicit example of

entanglement generated by state reversal and lower-bound the time using the capacity of

a normalized two-qubit interaction in canonical form (3.2), even allowing for LOCC.

Nonetheless, our state reversal protocol is able to nearly saturate this bound without

classical communication, without ancillas, and with only nearest-neighbor interactions

throughout the chain.

We propose a state reversal protocol with Hamiltonian of the form

H(J,h) = J0σ
1
x +

N−1∑
k=1

Jkσ
k
xσ

k+1
x + JNσ

N
x −

N∑
k=1

hkσ
k
z , (3.4)

81

where the coefficients J,h are engineered as follows. Letting

ak := π
√

(N + 1)2 − (N + 1− k)2/(4tN) , (3.5)

for k ∈ N, our protocol is defined as (see also Fig. 3.1)

Protocol 3.0.1. Let Jk = a2k+1, hk = a2k for all sites k, and let H := H(J,h). Apply

U := e−itNH to the input state.

We show in the following sections that our protocol implements state reversal

exactly, up to a global phase (we denote this equivalence by ∼=). In other words,

Theorem 3.0.2. U ∼= R.

3.1 Proof and analysis of the protocol

We prove the correctness of our protocol (i.e., Theorem 3.0.2) by mapping the

spin chain to a doubled chain of Majorana fermions via a Jordan-Wigner transformation,

describing the action in the Majorana picture, and then mapping back to the spin picture.

To help with the analysis, we extend the chain with two ancillary sites {0, N + 1} called

the edge,E, and refer to the sites {1, . . . , N} as the bulk,B. We define the transverse-field

Ising model (TFIM) Hamiltonian

H̃ :=
N∑
k=0

a2k+1σ
k
xσ

k+1
x −

N∑
k=1

a2kσ
k
z . (3.6)

on the extended chain that reduces to H when the edge is initialized to state |++〉.

Similarly, we define Ũ := e−iH̃tN . Note that the operator H̃ (and hence Ũ) acts trivially

82

on |++〉E , so this edge state does not change through the course of the evolution. (Our

results also hold using the edge state |−−〉E , which is equivalent to negating the sign

of the longitudinal fields in (3.4).) We then prove that in the Heisenberg picture, Pauli

matrices on site k map to the corresponding Pauli on site N + 1− k for all sites k in the

chain.

First, we map to the doubled chain of Majorana fermionic operators by defining

γ2k := P[0,k−1] · σkx, γ2k+1 := P[0,k−1] · σky (3.7)

at each site, where we have used the notation P[a,b] :=
∏b

j=a(−σjz) for the Jordan-Wigner

parity string between sites a and b. The γk are Hermitian and satisfy the Majorana anti-

commutation relations {γj, γk} = 2δjk. We also see that σkz = −iγ2kγ2k+1 and σkxσ
k+1
x =

iγ2k+1γ2k+2, leading (3.6) to take the form

H̃ = i
2N+1∑
k=1

akγkγk+1 . (3.8)

The Majoranas γ0, γ2N+3 do not appear in the sum, since a0 = a2N+2 = 0. In

the following lemma, we show how Ũ transforms the Majorana operators. Our main

technique is an analogy with the dynamics of the y component of the spin operator for

a spin N + 1
2

particle, similar to Refs. [114, 120]. Here, the same analogy provides a

stronger protocol which gives state reversal on all spins in the chain without introducing

relative phases.

83

Lemma 3.1.1. The operation Ũ acts on the Majorana operators as

ŨγkŨ
† =


γk if k = 0, 2N + 3,

(−1)k−1γ2N+3−k otherwise.

(3.9)

Proof. For the first case, H̃ has no overlap with operators γ0 and γ2N+3, so they are

stationary under evolution by H̃ .

For the remaining cases, we use the analogy with a spin s = N + 1
2

particle. The

Heisenberg evolution of γk corresponds to the rotation of the Sz eigenstate |s, k − s− 1〉

of magnetization k − s− 1. Observing that

iπ

4tN
〈s,m|Sy |s,m′〉 = as+m+1(δm′(m+1) − δm(m′+1)) (3.10)

(with ~ = 1), we can express (3.8) in the bilinear form H̃ = 1
2
γ†Aγ, for the vector

γ :=

[
γ1 γ2 . . . γ2N+2

]
and the matrix A := −π/(2tN)Sy expressed in the Sz basis.

Using the Majorana commutation relations, we have γ̇ = i[H̃,γ] = 2iAγ, so γ(t) =

e2iAtγ(0). The Heisenberg evolution of γk under H̃ for time tN is exactly analogous

to the (Schrödinger) time evolution of the state |s, k − s− 1〉 under Sy for time π. A

π-rotation under Sy maps

|s,−s+ k − 1〉 7→ (−1)k−1 |s, s− k + 1〉 , (3.11)

and correspondingly, γk(tN) = (−1)k−1γ2N+3−k.

Note that Eq. (3.11) can easily be verified for a spin-1/2 particle. Similarly, a spin-s

84

particle may be viewed as a system of 2s spin-1
2

particles with maximal total spin. In this

picture, a π-rotation under Sy corresponds to independent π-rotations of each small spin.

Since the state |s, k − s− 1〉 is represented by a permutation-symmetric state with k − 1

up spins, the π-rotation maps it to a state with 2s − (k − 1) up spins and introduces a

phase (−1) for each up spin, which is precisely (3.11).

Due to the signed reversal of the Majoranas in Lemma 3.1.1, the parity string

P[0,k] = ib+1−a∏2b+1
j=2a γj is (with the exception of γ0) reflected about the center of

the chain with an overall phase that exactly cancels when the product is reordered by

increasing site index. The invariance of the edge Majoranas is crucial, as it provides a

phase factor that cancels the state-dependent phases when we revert to the spin picture.

In particular, we have the following lemma.

Lemma 3.1.2. The operation Ũ acts on the parity strings as ŨP[0,k]Ũ
† = iσ0

xσ
N+1
x P[0,N−k]

for all k.

Proof. Applying Lemma 3.1.1, we have

ŨP[0,k]Ũ
† = ik+1(−1)k(2k+1)γ0

2k+1∏
j=1

γ2N+3−j . (3.12)

= γ0P[0,N]P[0,N−k]γ2N+2 (3.13)

where we reordered the product and used P[N+1−k,N] = P[0,N]P[0,N−k]. From the

Majorana anti-commutation relations and (3.7), the result follows.

Now we prove the main theorem.

Proof of Theorem 3.0.2. U ∼= R holds iff all bulk observables on the chain transform

85

identically under U,R. For any operator Ok supported on bulk site k ∈ {1, . . . , N}, we

show that UOkU † = 〈++| ŨOkŨ † |++〉E = ON+1−k. (Henceforth we drop the edge

subscript E.) By Eq. (3.7) and Lemmas 3.1.1 and 3.1.2, σkx is mapped to

UσkxU
† = 〈++| ŨP[0,k−1]γ2kŨ

† |++〉 (3.14)

= −i 〈++|σ0
xσ

N+1
x P[0,N+1−k]γ2N+3−2k |++〉 (3.15)

= −iσN+1−k
z σN+1−k

y = σN+1−k
x . (3.16)

Next, we use Lemma 3.1.2 to show that σkz is mapped to

UσkzU
† = −〈++| ŨP[0,k−1]P[0,k]Ũ

† |++〉 (3.17)

= 〈++|σ0
xσ

N+1
x P[0,N+1−k]σ

0
xσ

N+1
x P[0,N−k] |++〉 (3.18)

= σN+1−k
z . (3.19)

All other observables can be written in terms of the on-site Pauli operators σkx, σ
k
z , so U is

identical to R, up to global phase.

3.2 Time lower bound

We now prove a lower bound on the optimal time, t∗, to implement state reversal

using normalized local interactions. Let the entanglement entropy between systems A

and B of a bipartite state |ψ〉AB be E(|ψ〉), defined as the local von Neumann entropy

S(ρ) := −Tr[ρ log2 ρ], for ρ = TrB[|ψ〉 〈ψ|]. Then, the asymptotic entanglement capacity

86

of a Hamiltonian H that couples systems A and B was shown to equal [107]

EH = sup
|ψ〉∈HAA′BB′

lim
t→0

E
(
e−iHt |ψ〉

)
− E(|ψ〉)

t
, (3.20)

where HAA′BB′ is the Hilbert space of the bipartite systems A and B with arbitrarily

large ancilla spaces A′ and B′, respectively. In particular, for a Hamiltonian of the form

σx ⊗ σx, [104, 105] showed that

α := Eσx⊗σx = 2 max
y

√
y(1− y) log2

y

1− y ≈ 1.912. (3.21)

This is tighter than the more general small incremental entangling bound EH ≤

c‖H‖ log2 d = 2 for the conjectured c = 2 [108] (best known c = 4 [110]) and where the

smallest dimension of A or B gives d = 2. Since E is invariant under local unitaries, a

direct corollary is that Eσy⊗σy = Eσz⊗σz = α.

We now show that Protocol 3.0.1 is close to the shortest time possible.

Theorem 3.2.1. It holds that tN
t∗(1+1/N)

≤ απ/4 < 1.502.

Proof. We prove the time lower bound via an upper bound on the rate of increase of

entanglement across a cut in the center of the chain (allowing differences of one qubit for

odd N). Designate the left half of the cut as subsystem A and the right half as subsystem

B. A consists of subsystem A given by the qubit at site bN/2c adjacent to the cut, and

subsystem A′ consisting of the remaining qubits to the left of the cut as well as a finite but

arbitrary number of ancilla systems that are not part of the chain. Similarly, B consists of

subsystem B, the qubit at site bN/2c + 1, and B′, the remaining qubits in the right half

87

with an arbitrary finite number of ancilla.

Consider Hamiltonians of the formH(t) = K(t)+K̄(t) specifying the evolution of

the AB system, where K(t) is a two-qubit Hamiltonian supported on systems AB (i.e.,

the cut edge), while K̄ contains terms supported on AA′ or BB′ but not the cut edge

AB. For brevity, we drop the time parameter t even though we allow the Hamiltonian

to be time-dependent. We assume that K is expressed in canonical form (3.2) due to

equivalence under local unitaries. Aside from its support, we make no assumptions about

the form of K̄ (so the resulting bound is more general than nearest-neighbor interactions).

We call H satisfying these conditions divisible and also call protocols using divisible

Hamiltonians divisible.

Observing that EH is the supremum over a time derivative of the von Neumann

entropy of ρ = TrB |ψ〉 〈ψ|, we have

EH = sup
|ψ〉

Tr

(
−dρ
dt

log ρ− ρd log ρ

dt

)
(3.22)

= sup
|ψ〉

Tr

(
−dρ
dt

log ρ

)
. (3.23)

The reduced density matrix ρ has time evolution

dρ

dt
= −iTrB [H, |ψ〉 〈ψ|] . (3.24)

We substitute H = K̄ +
∑

j∈{x,y,z}
µjσj ⊗ σj in the commutator and substitute the time-

dependence of ρ into Eq. (3.23). By linearity of the trace and sublinearity of the

88

supremum, we get

EH ≤ EK̄ +
∑

j∈{x,y,z}

µjEσj⊗σj ≤ α , (3.25)

where we observe that EK̄ = 0 since K̄ does not have support across the cut, and use the

normalization condition
∑

j |µj| ≤ 1. This bound holds for all divisible Hamiltonians H ,

with nearest-neighbor Hamiltonians as a special case.

The entanglement generated by any divisble protocol can now be bounded in time.

We observe that if the protocol contains local measurements then these cannot increase

entanglement E(|ψ〉) and that feedback may be viewed as a particular time-dependence

of H conditioned on measurement outcomes. Therefore, (3.25) bounds the total increase

in entanglement across bipartition AB over a time t∗ by

E(|ψ(t∗)〉)− E(|ψ(0)〉) ≤ αt∗ (3.26)

for any initial state |ψ(0)〉 acted on by a divisible protocol and LOCC.

Finally, we give an explicit bound on the worst-case time of divisible state reversal

protocols by specifying an initial state. Let the system start in the product state |φ〉A⊗|φ〉B

where each qubit forms a Bell state with a local ancilla not part of the chain. Clearly,

E(|φ〉A ⊗ |φ〉B) = 0. We perform a reversal R on the chain and get the state |ψ〉AB :=

R(|φ〉A ⊗ |φ〉B), which is maximally entangled, i.e., E(|ψ〉AB) = N . Then, (3.26) gives

the bound

t∗ ≥ E(|ψ〉AB)− E(|φ〉A ⊗ |φ〉B)

α
≥ N

α
(3.27)

on any divisible state reversal protocol. Comparing this to our protocol time (3.3), we

89

have

tN
t∗
≤ απ

√
(N + 1)2 − p(N)

4N
≤ απ(1 + 1/N)

4
.

3.3 Discussion

The time-dependent protocol in Ref. [123] is closely related to our time-

independent protocol, and both can be described within the same framework (see Sec. 3.4).

In the time-dependent case, the state is evolved alternately under two restrictions of the

Hamiltonian (3.4): H(1,0) (uniform Ising) and H(0,1) (uniform transverse field), each

for time π/4, for a total ofN+1 rounds. In the Majorana picture, these Hamiltonians carry

out a simultaneous braiding of neighboring Majoranas along even (resp. odd) edges of the

doubled Majorana chain. The resulting map matches Lemma 3.1.1 exactly, implying that

the two protocols are identical at the level of Majorana operators. Indeed, any protocol

achieving the map in Lemma 3.1.1 is guaranteed to implement state reversal.

In fact, as shown in Sec. 3.5, there is an infinite family of nearest-neighbor, time-

independent Hamiltonian protocols for state reversal that generalizes Protocol 3.0.1. This

family is parameterized by a non-negative integer m, with modified σkxσ
k+1
x coupling

J
(m)
k ∝

√
(2N + 1− 2k + 4m) (2k + 1 + 4m) and unmodified σkz field strength.

Protocol 3.0.1 corresponds to the special case of m = 0. By choosing large m, the

coupling strength can be engineered to be nearly uniform throughout the chain, which

may be a desirable feature in experimental implementations of the protocol [122].

Moreover, we show by simulations that our protocol is more robust to noise by

static disorder, caused by imperfect fabrication or tuning, in NISQ implementations

90

(see Sec. 3.6). The spectral distance of the gate-based and time-independent reversal

protocols show a reduced scaling over SWAP when fitted to exp(Naδb) in the a parameter

by (standard error) 0.33(0.020) and 0.25(0.020), respectively. This implies, for example,

that with strong disorder and an error threshold of 0.03, a SWAP protocol can only reverse

4 sites, whereas the time-independent protocol can reverse 8 sites. We give an operational

meaning to the spectral distance by relating it to the completely bounded trace norm

(diamond norm) and state fidelity.

In general, we would like to know how fast we can perform qubit routing on

graphs. Qubit routing is a key subroutine in quantum architectures with incomplete

connectivity [15], and can potentially improve runtimes of general quantum algorithms

by overcoming limitations imposed by the underlying qubit connectivity. Indeed, we later

showed [19] that a constant factor speedup over a SWAP-based approach is achievable

for qubit routing on the chain using our fast reversal protocol as a primitive. While a

superconstant speedup is not possible in one dimension, higher dimensional systems may

offer such opportunities. State transfer in these systems has been studied [133] but the

general question of routing remains open. Our techniques show that routing protocols

for higher dimensional systems may exist by exploiting similar mappings between spins

and fermions [134–136]. It is also interesting to consider an alternative model for routing

that includes local measurements and fast classical communication. While the time lower

bound presented here rules out superconstant speedups for the chain in this alternative

model, faster protocols are possible in other geometries [137]. Future work will explore

these more general schemes for qubit routing.

91

Figure 3.2: Time-dependent reversal protocol for N = 2 (with two edge ancillas). For any bulk
state |ab〉12 (with edge state |++〉E), alternating π/4 evolutions under H̃2, H̃1 are applied a total
of 2N + 2 times. Each step braids neighboring Jordan-Wigner Majoranas as indicated by the
arrows; the right-movers keep the same sign while the left-movers gain a minus sign. The edge
Majoranas γ0, γ7 are unchanged (a crucial feature that ensures the correct parity phases), while
the intermediate Majoranas undergo reversal of position with alternating sign. The final state in
the bulk of the chain is |ba〉12.

3.4 Time-dependent protocol for reversal

In this section, we give a simple analysis of the time-dependent protocol given

in Refs. [123, 124] using our methods. The strategy is to prove that this protocol

satisfies Lemma 3.1.1. Lemma 3.1.2 and Theorem 3.0.2 are then automatically satisfied.

First, we re-introduce the protocol using our notation.

92

Protocol 3.4.1. Let Hh := H(0,1) and HJ := H(1,0), where 1 = (1, 1, . . . , 1) and

0 = (0, 0, . . . , 0). Explicitly,

Hh =
N∑
k=1

Zk , (3.28)

HJ = X1 +
N−1∑
k=1

XkXk+1 +XN . (3.29)

Apply V :=
(
ei
π
4
Hhei

π
4
HJ
)N+1 to the input state.

As before, we extend the chain with two ancillary sites {0, N + 1} that constitute

the edge E. The unitary V extends to an operator Ṽ := 1E ⊗ V on the extended chain.

Then the following lemma holds.

Lemma 3.4.1. The operation Ṽ acts on the Majorana operators as

Ṽ γkṼ
† =


γk if k = 0, 2N + 3,

(−1)k−1γ2N+3−k otherwise.

(3.30)

Proof. We use Eq. (3.7) to write V as a product of alternating π/4-rotations under

two Hamiltonians H̃J = i
N∑
k=0

γ2k+1γ2k+2 and H̃h = i
N∑
k=1

γ2kγ2k+1. Since e−π/4γiγj

is a braiding unitary that maps γi 7→ γj, γj 7→ −γi, γk 6=i,j 7→ γk, it follows that

the operator ei
π
4
H̃h braids nearest-neighbor Majoranas along all odd edges of the chain

(except the first and last edge), while ei
π
4
H̃J braids along the even edges. Therefore,

alternating π/4 rotations under H̃J and H̃h implement an even-odd sort [138] on the

chain, as shown in Fig. 3.2. Accounting for sign changes, the Majoranas map as follows:

γk 7→ (−1)k+1γ2N+3−k, while γ0, γ2N+3 remain unchanged.

93

3.5 Infinite family of Hamiltonians for state reversal

Reference [122] shows that there is an infinite family of XY Hamiltonians that

generalize the protocol introduced in [120]. In fact, Protocol 3.0.1 is also a special case of

an infinite family of protocols parameterized by a single non-negative integer m, as given

below.

Protocol 3.5.1. Let m ∈ Z≥0, and

J
(m)
k :=

π

4

√
(2k + 1 + 4m) (2N + 1− 2k + 4m) (3.31)

h
(m)
k := π

√
k (N + 1− k) (3.32)

for all sites k = 1, . . . , N . Let H(m) = H(J(m),h(m)). Apply U (m) := e−iH
(m) to the

input state.

The protocol modifies only the couplings J (m)
k as a function of m, while the field

terms h(m)
k = hk are invariant with m. Note that U (0) = U , so Protocol 3.0.1 is indeed

a special case of Protocol 3.5.1. For convenience, we have rescaled the coefficients

so that the evolution time is 1. To prove the correctness of this family of protocols,

write the Hamiltonian H(m) in terms of Majorana fermions obtained by Jordan-Wigner

transformation on the spin chain (extended to edge sites {0, N + 1}). We have

H(m) =
1

2
γ · A(m) · γ, (3.33)

where γ =

[
γ1 γ2 · · · γ2N+2

]
and A(m) is a (2N + 2)× (2N + 2) tridiagonal matrix

94

with entries

A(m) = i



0 J
(m)
0

−J (m)
0 0 h1

−h1 0 J
(m)
1

.

−hN 0 J
(m)
N

−J (m)
N 0



. (3.34)

As before, the Heisenberg evolution of the Majoranas under H(m) is given by γ(t) =

e2iA(m)tγ(0). Lemma 3.1.1 shows that the operator e2iA(0) implements reversal. Here we

show that e2iA(m)
= e2iA(0) for all m, which implies that U (m) implements state reversal

for all m. We state the following lemma (due to Refs. [139, 140]) on the spectrum of

A(m).

Lemma 3.5.1. Let A(m) be as given in Eq. (3.34), and sk := sgn(2N + 3 − 2k). Then

A(m) has spectrum

E
(m)
k =

π

4
(2k − 2N − 3 + 4skm) (3.35)

for k = 1, . . . , 2N + 2. The corresponding eigenvectors vk satisfy the property vkj =

(−1)N+k−j+1/2vk(2N+3−j).

Proof. The first claim follows from Ref. [139]. Via a transformation of the off-diagonals

that preserves the spectrum, A(m) can be converted to a matrix B(n, a) of Sylvester-Kac

95

type

B(n, a) :=
π

4



0 1 + a

n+ a 0 2

n− 1 0 3 + a

.

2 0 n+ a

1 + a 0



, (3.36)

for n = 2N + 1, a = 4m. As shown in [139], the eigenvalues of B(n, a) are given by the

formula λ±,j = ±π
4
|2j + 1 + a| for j ∈ {0, . . . , n}, and the first claim follows.

For the second claim, we observe again that A(m) may be converted to a real,

symmetric, tridiagonal matrix C(m) with positive off-diagonal entries via the similarity

transformation C(m) := DA(m)D−1 where D = diag
(
i, i2, . . . , i2N+2

)
. Reference [140]

shows that the eigenvectors uk = Dvk of C(m) (ordered by ascending eigenvalue) satisfy

ukj = (−1)k−1uk(2N+3−j) for k = 1, . . . , 2N + 2. Correspondingly, the eigenvalues of

A(m) satisfy vkj = (−1)k−1i2N+3−2jvk(2N+3−j) = (−1)N+k−j+1/2vk(2N+3−j).

Finally, we show that e2iA(m) implements reversal.

Theorem 3.5.2. For all m ∈ Z≥0, A(m) satisfies
[
e2iA(m)

]
jl

= (−1)j−1δj(2N+3−l).

Proof. Write

e2iA(m)

=
2N+2∑
k=1

e2iE
(m)
k vkv

†
k =

2N+2∑
k=1

(−1)k−N−3/2vkv
†
k , (3.37)

96

where we dropped the trivial phase 2πimsk. The matrix elements of eiA(m) are

[
eiA

(m)
]
jl

=
2N+2∑
k=1

(−1)k−N−3/2vkjv
∗
kl (3.38)

=
2N+2∑
k=1

(−1)2N+2−lvkjv
∗
k(2N+3−l) (3.39)

= (−1)j−1δj(2N+3−l) , (3.40)

where in the second step we used Lemma 3.5.1 as v∗kl = (−1)l−k−N−1/2v∗k(2N+3−l).

Therefore, e2iA(m) maps γk 7→ (−1)k−1γ2N+3−k, which implies that the protocol U (m)

implements state reversal for all m ∈ Z≥0.

When normalized so that all two-qubit terms are bounded by unity in spectral norm,

H(m) implements state reversal in time t(m)
N = (N+1+4m)π

4
. Therefore, the time cost

increases linearly in m and is minimal for Protocol 3.0.1 where m = 0. Next, observe

that if we choose 4m � N , the variation in coupling coefficients J (m)
k is small and on

the order ∼1
8

(
N+1
2m

)2. Therefore, the parameter m quantifies a trade-off between reversal

time and the non-uniformity of J (m)
k . Setting m = N + 1, for example, yields a variation

in the couplings on the order of 3% for any N , and gives reversal in time 5Nπ/4.

3.6 Robustness of the protocol

Protocol 3.0.1 and its generalizations given in Sec. 3.5 are exact, i.e., any input

state |ψ〉 maps perfectly to the output R |ψ〉, assuming the interaction coefficients are

implemented exactly as prescribed by the protocol. However, inherent in experimental

systems is noise, and the usefulness of a given state transfer protocol is determined not

97

only by the time of operation and fidelity under perfect implementation, but also resilience

to noise. There are many possible sources of noise, arising from device imperfections,

interaction with the environment, or imperfect state preparation, execution or readout. Of

these, imperfect fabrication can be modeled as a static noise term on every coefficient in

the Hamiltonian. We compare our time-independent protocol with a swap-based protocol

for reversal (odd-even sort) and a gate-based protocol [123].

Stochastic noise can be modeled as a perturbation to the Hamiltonian coefficients.

For the case of disorder, we draw a single noise term for every coefficient from the normal

distributionN . We assume that the noise is multiplicative, so that the noise strength scales

proportional to the magnitude of the coefficient. The perturbed Hamiltonian H ′ for our

time-independent protocol then looks like

H ′ = J ′0σ
1
x +

N−1∑
k=1

J ′kσ
k
xσ

k+1
x + J ′Nσ

N
x −

N∑
k=1

h′kσ
k
z , (3.41)

where J ′i = Ji · (1 + δJi), h
′
i = hi · (1 + δhi), where δhi ∼ N (δh), δJi ∼ N (δJ) for

specified standard deviations δh, δJ ≥ 0. Evolution under this Hamiltonian gives a noisy

reversal R′ := e−iH
′
itN that reduces to R when δh = δJ = 0. For swap and gate-based

protocols, we compute the equivalent Hamiltonian formulation and similarly add noise

terms.

A natural and widely used metric for the distinguishability of outputs of two

quantum channels is the completely bounded trace norm (or diamond norm), which is the

supremum over the trace distance between outputs over all inputs, for arbitrary identity

extensions of the channels (3.55) [141]. The computation of the diamond norm can be

98

expressed as the solution to a particular optimization problem, making it a somewhat

non-trivial quantity to compute. We consider unitary noisy models, where the diamond

distance is equivalent to a simpler notion of distinguishability, the spectral distance

∆ ≡ ||R′−R || , (3.42)

for the perfect and noisy state reversals R and R′. The diamond distance is at most two

times as large as the spectral distance [142]. We also lower bound the output fidelity by

the spectral distance, giving a relation to more practical figures of merit.

The spectral distance bounds the state distance

‖(R−R′) |ψ0〉‖ ≤ ∆, (3.43)

for an arbitrary input pure state |ψ0〉. In fact, ∆ can be used to bound the fidelity between

perfect and noisy output states by

‖∆‖2 = ‖(R−R′)†(R−R′)‖ (3.44)

= max
|ψ〉
| 〈ψ| (R−R′)†(R−R′) |ψ〉 | (3.45)

= max
|ψ〉
| 〈ψ| 21− R†R′−R′†R |ψ〉 | (3.46)

= max
|ψ〉
|2− 2 Re 〈ψ|R†R′ |ψ〉 | (3.47)

= 2−min
|ψ〉

2 Re 〈ψ|R†R′ |ψ〉 (3.48)

≥ 2− 2 min
|ψ〉
| 〈ψ|R†R′ |ψ〉 | , (3.49)

99

where we used the fact that for any unitary U , Re 〈ψ|U |ψ〉 ≤ 1, and Re [z] ≤ |z| for any

z ∈ C. Next, note that the fidelity between perfect and noisy output states for input |ψ〉

is given by | 〈ψ|R†R′ |ψ〉 |2. Let Fmin denote the worst-case fidelity over all pure input

states. Then,

1

2
∆2 ≥ 1−

√
Fmin =⇒ Fmin ≥

(
1− 1

2
∆2

)2

. (3.50)

When ∆ ≤
√

2, we have (1−∆2/2)2 ≥ 1−∆2 and we get the bound

Fmin ≥ 1−∆2 . (3.51)

Therefore, for small ∆, the infidelity between the perfect and noisy output states for any

pure input state is at most ∆2. Later in Theorem 3.6.1, we show a more general bound

that holds for mixed inputs. For the numerics presented here, however, we assume pure

input states.

We estimate the spectral distance dependence on noise and system size in the

three candidate protocols. For each protocol, we probe the distance as a function of

similar on-site and coupling disorder δ = δh = δJ , and increasing number of spins N .

Since the spectral distance is computed by exact diagonalization, its runtime scales as an

exponential in N and it is possible to probe system sizes up to N = 14 with the resources

available. At these sizes, we can already see differences between the protocols, shown

in Fig. 3.3. At each error rate δ, the swap protocol has the worst performance, followed

by the time-independent protocol, and lastly, the gate-based protocol. We note that the

gate-based and time-independent protocols perform within a standard deviation of one

100

Figure 3.3: Spectral distance with standard deviation for different protocols under varying
strengths of noise. We take 100 samples for each datapoint and use a linear fit for a power-
law ∆ = exp(Naδb) controlled on the protocol, i.e., fitting log ∆ = a logN + b log δ + O(1),
to find (standard error) a ≈ 1.66(0.012) and b ≈ 0.994(0.0028) for the SWAP-based protocol.
The b coefficient changes insignificantly for time-independent and gate-based protocols but the
a coefficient is reduced by 0.31(0.016) for gate-based and 0.23(0.016) for time-independent
protocols, indicating more robust scaling of these protocols in system size, relative to a SWAP-
based protocol.

101

another, but the SWAP protocol is significantly noisier. For example, at a threshold of

∆ ≤ 0.03, the swap can reverse only up to 4 sites, while the time-independent protocol

can successfully reverse 8 sites. Therefore, the specialized protocols for reversal improve

upon SWAP-based protocols not only in runtime but also in accuracy.

The relative accuracy between time-independent and gate-based protocols is not

entirely predicted by our simulations here. The time-independent protocol does not

vary in time, and derives its error primarily from imperfect engineering of the coupling

strengths and interactions with the environment. The gate-based protocol, however,

requires dynamical control, which is an additional source of noise. Since this noise source

is likely to worsen the performance of the discrete protocol, we cannot make a definite

comparison between the two protocols in our model which does not capture this effect.

Previously we showed that for pure input states, the infidelity is at most the squared

spectral norm difference between the perfect and noisy reversal unitaries. Now we show

a bound relating the fidelity to the spectral norm difference for mixed input states.

Theorem 3.6.1. For unitary operators U and V acting on an initial state ρ0

F (Uρ0U
†, V ρ0V

†) ≥ (1− ‖U − V ‖)2 ,

where the fidelity function F of states ρ and σ is defined as

F (ρ, σ) ≡ Tr(
√
ρσ
√
ρ)2 .

102

Proof. The Fuchs-van de Graaff inequality implies [141, 143]

F (Uρ0U
†, V ρ0V

†) ≥ (1− 1

2
‖Uρ0U

† − V ρ0V
†‖1)2 , (3.52)

where we use the trace norm ‖X‖1 ≡ Tr
√
X∗X , for linear operators X . Now we can

define the trace norm on linear maps Φ as

‖Φ‖1 ≡ max { ‖Φ(X)‖1 : ‖X‖1 ≤ 1 } . (3.53)

Given that ‖ρ‖1 = 1 for any density operator ρ, and defining the unitary channels U(X) =

UXU † and V(X) = V XV †, the trace distance is upper bounded by

‖Uρ0U
† − V ρ0V

†‖1 = ‖U(ρ0)− V(ρ0)‖1 = ‖(U − V)(ρ0)‖1 ≤ ‖U − V‖1 . (3.54)

The completely bounded trace norm (or diamond norm) extends a given mapping Φ with

an identity mapping 1 of (at most) the same input dimension

|||Φ|||1 ≡ ‖Φ⊗ 1‖1 (3.55)

and results in a bounded distance under extension with a (possibly entangled) ancilla

system. The trace norm is upper bounded by the completely bounded trace norm

‖Φ‖1 = max { ‖Φ(X)‖1 : ‖X‖1 ≤ 1 } ≤ max { ‖(Φ⊗ 1)(Y)‖1 : ‖Y ‖1 ≤ 1 } = |||Φ|||1

(3.56)

103

because the maximization over linear operators Y is on a larger space. Finally, we can

bound the completely bounded trace norm by the spectral norm [142, Lemma 7]

|||U − V|||1 ≤ 2‖U − V ‖ (3.57)

for the special case of unitary channels. Bounding Eq. (3.52) by Eqs. (3.54), (3.56)

and (3.57) gives the result.

104

Chapter 4: Routing using fast reversal

4.1 Introduction

Qubit connectivity limits quantum information transfer, which is a fundamental

task for quantum computing. While the common model for quantum computation usually

assumes all-to-all connectivity, proposals for scalable quantum architectures do not have

this capability [7–9]. Instead, quantum devices arrange qubits in a fixed architecture that

fits within engineering and design constraints. For example, the architecture may be grid-

like [12, 144] or consist of a network of submodules [7, 8]. Circuits that assume all-to-all

qubit connectivity can be mapped onto these architectures via protocols for routing qubits,

i.e., permuting them within the architecture using local operations.

Long-distance gates can be implemented using SWAP gates along edges of the

graph of available interactions. A typical procedure swaps pairs of distant qubits along

edges until they are adjacent, at which point the desired two-qubit gate is applied on

the target qubits. These swap subroutines can be sped up by parallelism and careful

scheduling [86, 145–150]. Minimizing the SWAP circuit depth corresponds to the

ROUTING VIA MATCHINGS problem [15, 132]. The minimal SWAP circuit depth to

implement any permutation on a graph G is given by its routing number, rt(G) [132].

Deciding rt(G) is generally NP-hard [151], but there exist algorithms for architectures

105

of interest such as grids and other graph products [15, 132, 152]. Furthermore, one can

establish lower bounds on the routing number as a function of graph diameter and other

properties.

Routing using SWAP gates does not necessarily give minimal circuit evolution time

since it is effectively classical and does not make use of the full power of quantum

operations. Indeed, faster protocols are already known for specific permutations in

specific qubit geometries such as the path [18, 123]. These protocols tend to be carefully

engineered and do not generalize readily to other permutations, leaving open the general

question of devising faster-than-SWAP quantum routing. In this chapter, we give a positive

answer to this question.

Rather than directly engineering a quantum routing protocol, we consider a hybrid

strategy that leverages a known protocol for quickly performing a specific permutation to

implement general quantum routing. Specifically, we consider the reversal operation

ρ :=

bn
2
c∏

k=1

SWAPk,n+1−k (4.1)

that swaps the positions of qubits about the center of a length-n path. Fast

quantum reversal protocols are known in the gate-based [123] and time-independent

Hamiltonian [18] settings. The reversal operation can be implemented in time [18]

T (ρ) ≤
√

(n+ 1)2 − p(n)

3
≤ n+ 1

3
, (4.2)

where p(n) ∈ {0, 1} is the parity of n. ‘Time’ here is to be understood as the evolution

106

time of a Hamiltonian with two-local interaction terms that are each bounded by 1 in

spectral norm. This is a more general notion of time than gate depth, which only counts

the number of circuit layers without accounting for the time required to implement

each layer. Both protocols exhibit an asymptotic time scaling of n/3 + O(1), which

is asymptotically three times faster than the best possible SWAP-based time of n − 1

(bounded by the diameter of the graph) [132]. The odd-even sort algorithm provides a

nearly tight time upper bound of n [153] and will be our main point of comparison.

Routing using reversals has been studied extensively due to its applications

in comparative genomics (where it is known as sorting by reversals) [154, 155].

References [156–158] present routing algorithms where, much like in our case, reversals

have length-weighted costs. However, these models assume reversals are performed

sequentially, while we assume independent reversals can be performed in parallel, where

the total cost is given by the evolution time, akin to circuit depth. To our knowledge,

results from the sequential case are not easily adaptable to the parallel setting and require

a different approach.

Routing on paths is a fundamental building block for routing on more general

graphs. For example, a two-dimensional grid graph is the Cartesian product of two path

graphs, and the best known routing routine applies a path routing subroutine 3 times [132].

A quantum protocol for routing on the path in time cn, for a constant c > 0, would

imply a routing time of 3cn on the grid. More generally, routing algorithms for the

generalized hierarchical product of graphs can take advantage of faster routing of the

path base graph [15].

In the rest of this chapter, we present the following results on quantum routing

107

using fast reversals. In Sec. 4.2, we give basic examples of using fast reversals to

perform routing on general graphs to indicate the extent of possible speedup over SWAP-

based routing, namely a graph for which routing can be sped up by a factor of 3, and

another for which no speedup is possible. Sec. 4.3 presents algorithms for routing sparse

permutations, where few qubits are routed, both for paths and for more general graphs.

Here, we obtain the full factor 3 speedup over SWAP-based routing. Then, in Sec. 4.4,

we prove the main result that there is a quantum routing algorithm for the path with

worst-case constant-factor advantage over any SWAP-based routing scheme. Finally, in

Sec. 4.5, we show that our algorithm has average-case routing time 2n/3 + o(n) and any

SWAP-based protocol has average-case routing time at least n− o(n).

4.2 Simple bounds on routing using reversals

Given the ability to implement a fast reversal ρ with cost given by Eq. (4.2), the

largest possible asymptotic speedup of reversal-based routing over SWAP-based routing

is a factor of 3. This is because the reversal operation, which is a particular permutation,

cannot be performed faster than n/3 + o(n), and can be performed in time n classically

using odd-even sort. As we now show, some graphs can saturate the factor of 3 speedup

for general permutations, while other graphs do not admit any speedup over SWAPs.

Maximal speedup: For n odd, let K∗n denote two complete graphs, each on (n + 1)/2

vertices, joined at a single “junction” vertex for a total of n vertices (Fig. 4.1a). Consider

a permutation on K∗n in which every vertex is sent to the other complete subgraph, except

that the junction vertex is sent to itself. To route with SWAPs, note that each vertex (other

108

(a) Joined graph K∗
9 . (b) Complete graph K5.

Figure 4.1: K∗9 admits the full factor of 3 speedup in the worst case when using reversals over
SWAPs, whereas K5 admits no speedup when using reversals over SWAPs.

than that at the junction) must be moved to the junction at least once, and only one vertex

can be moved there at any time. Because there are (n+ 1)/2− 1 non-junction vertices on

each subgraph, implementing this permutation requires a SWAP-circuit depth of at least

n− 1.

On the other hand, any permutation on K∗n can be implemented in time n/3 +O(1)

using reversals. First, perform a reversal on a path that connects all vertices with opposite-

side destinations. After this reversal, every vertex is on the side of its destination and the

remainder can be routed in at most 2 steps [132]. The total time is at most (n+ 1)/3 + 2,

exhibiting the maximal speedup by an asymptotic factor of 3.

No speedup: Now, consider the complete graph on n vertices, Kn (Fig. 4.1b). Every

permutation on Kn can be routed in at most time 2 using SWAPs [132]. Consider

implementing a 3-cycle on three vertices of Kn for n ≥ 3 using reversals. Any reversal

sequence that implements this permutation will take at least time 2. Therefore, no speedup

is gained over SWAPs in the worst case.

We have shown that there exists a family of graphs that allows a factor of 3

109

speedup for any permutation when using fast reversals instead of SWAPs, and others where

reversals do not grant any improvement. The question remains as to where the path graph

lies on this spectrum. Faster routing on the path is especially desirable since this task is

fundamental for routing in more complex graphs.

4.3 An algorithm for sparse permutations

We now consider routing sparse permutations, where only a small number k of

qubits are to be moved. For the path, we show that the routing time is at most n/3 +

O(k2). More generally, we show that for a graph of radius r, the routing time is at most

2r/3+O(k2). (Recall that the radius of a graphG = (V,E) is minu∈V maxv∈V dist(u, v),

where dist(u, v) is the distance between u and v in G.) Our approach to routing sparse

permutations using reversals is based on the idea of bringing all k qubits to be permuted

to the center of the graph, rearranging them, and then sending them to their respective

destinations.

4.3.1 Paths

A description of the algorithm on the path, called MiddleExchange, appears in

Algorithm 4.3.1. Fig. 4.2 presents an example of MiddleExchange for k = 6.

In Theorem 4.3.1, we prove that Algorithm 4.3.1 achieves a routing time of

asymptotically n/3 when implementing a sparse permutation of k = o(
√
n) qubits on

the path graph. First, let Sn denote the set of permutations on {1, . . . , n}, so |Sn| = n!.

Then, for any permutation π ∈ Sn that acts on a set of labels {1, . . . , n}, let πi denote the

110

Input : π, a permutation
1 function MiddleExchange(π):
2 identify the labels x1, . . . , xk ∈ [n] to be permuted, with xi < xi+1

3 let t be the largest index for which xt ≤ bn/2c, i.e., the last label xt left of the
median

4 for i = 1 to t− 1 :
5 perform ρ(xi − i+ 1, xi+1 − 1)

6 for j = k to t+ 2 :
7 perform ρ(xj + k − j, xj−1 + 1)
8 perform ρ(xt − t+ 1, bn/2c)
9 perform ρ(xt+1 + k − t− 1, bn/2c+ 1)

10 ρ̄← the sequence of all reversals so far
11 route the labels x1, . . . , xk such that after performing ρ̄ in reverse order, each

label is at its destination
12 perform ρ̄ in reverse order

Algorithm 4.3.1: MiddleExchange algorithm to sort sparse permutations on the path
graph. We let ρ(i, j) denote a reversal on the segment starting at i and ending at j,
inclusive.

∗ ∗ ∗ ∗ 5 ∗ ∗ ∗ ∗3 ∗ ∗ ∗ ∗1 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗4 ∗ ∗ ∗ ∗6 ∗ ∗ ∗ ∗ 2 ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 5 3 ∗ ∗ ∗ ∗1 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗4 ∗ ∗ ∗ ∗ 6 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3 5 1 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗ 4 2 6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 5 3
∣∣∣∣ 6 2 4︸ ︷︷ ︸

rearrange

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3 1 2
∣∣∣∣5 6 4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 2 13 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗46 5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 12 ∗ ∗ ∗ ∗3 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗4 ∗ ∗ ∗ ∗56 ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗2 ∗ ∗ ∗ ∗3 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗4 ∗ ∗ ∗ ∗5 ∗ ∗ ∗ ∗6 ∗ ∗ ∗ ∗

Figure 4.2: Example of MiddleExchange (Algorithm 4.3.1) on the path for k = 6.

111

destination of label i under π. We may then write π = (π1, π2, . . . , πn). Let ρ̄ denote an

ordered series of reversals ρ1, . . . , ρm, and let ρ̄1 ++ ρ̄2 be the concatenation of two reversal

series. Finally, let S · ρ and S · ρ̄ denote the result of applying ρ and ρ̄ to a sequence S,

respectively, and let |ρ| denote the length of the reversal ρ, i.e., the number of vertices it

acts on.

Theorem 4.3.1. Let π ∈ Sn with k = |{x ∈ [n] | πx 6= x}| (i.e., k elements are to be

permuted, and n− k elements begin at their destination). Then Algorithm 4.3.1 routes π

in time at most n/3 +O(k2).

Proof. Algorithm 4.3.1 consists of three steps: compression (Line 4–Line 9), inner

permutation (Line 11), and dilation (Line 12). Notice that compression and dilation are

inverses of each other.

Let us first show that Algorithm 4.3.1 routes π correctly. Just as in the algorithm, let

x1, . . . , xk denote the labels x ∈ [n] with xi < xi+1 such that πx 6= x, that is, the elements

that do not begin at their destination and need to be permuted. It is easy to see that these

elements are permuted correctly: After compression, the inner permutation step routes xi

to the current location of the label πxi in the middle. Because dilation is the inverse of

compression, it will then route every xi to its correct destination. For the non-permuting

labels, notice that they lie in the support of either no reversal or exactly two reversals,

ρ1 in the compression step and ρ2 in the dilation step. Therefore ρ1 reverses the segment

containing the label and ρ2 re-reverses it back into place (so ρ1 = ρ2). Therefore, the

labels that are not to be permuted end up exactly where they started once the algorithm is

complete.

112

Now we analyze the routing time. Let di = xi+1 − xi − 1 for i ∈ [k − 1]. As in the

algorithm, let t be the largest index for which xt ≤ bn/2c. Then, for 1 ≤ i ≤ t − 1, we

have |ρi| = di + i, and, for t + 2 ≤ j ≤ k, we have |ρj| = dj−1 + k − j. Moreover, we

have |ρt| = bn/2c − xt − 1 + t and |ρt+1| = xt+1 − bn/2c + k − t. From all reversals

in the first part of Algorithm 4.3.1, ρ̄, consider those that are performed on the left side of

the median (position bn/2c of the path). The routing time of these reversals is

1

3

t∑
i=1

|ρi|+ 1 =
1

3
(bn/2c − xt − 1) +

1

3

t∑
i=1

(di + i+ 1)

=
t(t+ 1)

6
+

1

3
(bn/2c − xt − 1) +

t∑
i=1

(xi+1 − xi)

= O(t2) +
1

3
(bn/2c − x1)

≤ n

6
+O(k2).

(4.3)

By a symmetric argument, the same bound holds for the compression step on the right

half of the median. Because both sides can be performed in parallel, the total cost for

the compression step is at most n/6 + O(k2). The inner permutation step can be done in

time at most k using odd-even sort. The cost to perform the dilation step is also at most

n/6 + O(k2) because dilation is the inverse of compression. Thus, the total routing time

for Algorithm 4.3.1 is at most 2(n/6 +O(k2)) + k = n/3 +O(k2).

It follows that sparse permutations on the path with k = o(
√
n) can be implemented

using reversals with a full asymptotic factor of 3 speedup.

113

4.3.2 General graphs

We now present a more general result for implementing sparse permutations on an

arbitrary graph.

Theorem 4.3.2. Let G = (V,E) be a graph with radius r and π a permutation of vertices.

Let S = { v ∈ V : πv 6= v }. Then π can be routed in time at most 2r/3 +O(|S|2).

Proof. We route π using a procedure similar to Algorithm 4.3.1, consisting of the same

three steps adapted to work on a spanning tree of G: compression, inner permutation,

and dilation. Dilation is the inverse of compression and the inner permutation step can

be performed on a subtree consisting of just k = |S| nodes by using the ROUTING VIA

MATCHINGS algorithm for trees in 3k/2 + O(log k) time [152]. It remains to show that

compression can be performed in r/3 +O(k2) time.

We construct a token tree T that reduces the compression step to routing on a tree.

Let c be a vertex in the center of G, i.e., a vertex with distance at most r to all vertices.

Construct a shortest-path tree T ′ of G rooted at c, say, using breadth-first search. We

assign a token to each vertex in S. Now T is the subtree of T ′ formed by removing

all vertices v ∈ V (T ′) for which the subtree rooted at v does not contain any tokens,

as depicted in Fig. 4.3. In T , call the first common vertex between paths to c from two

distinct tokens an intersection vertex, and let I be the set of all intersection vertices. Note

that if a token t1 lies on the path from another token t2 to c, then the vertex on which t1

lies is also an intersection vertex. Since T has at most k leaves, |I| ≤ k − 1.

For any vertex v in T , let the descendants of v be the vertices u 6= v in T whose

path on T to c includes v. Now let Tv be the subtree of T rooted at v, i.e., the tree

114

c c

G T
Figure 4.3: Illustration of the token tree T in Theorem 4.3.2 for a case where G is the 5× 5 grid
graph. Blue circles represent vertices in S and orange circles represent vertices not in S. Vertex
c denotes the center of G. Red-outlined circles represent intersection vertices. In particular, note
that one of the blue vertices is an intersection because it is the first common vertex on the path to
c of two distinct blue vertices.

composed of v and all of the descendants of v. We say that all tokens have been moved up

to a vertex v if for all vertices u in Tv without a token, Tu also does not contain a token.

The compression step can then be described as moving tokens up to c.

We describe a recursive algorithm for doing so in Algorithm 4.3.2. The base case

considers the trivial case of a subtree with only one token. Otherwise, we move all tokens

on the subtrees of descendant b up to the closest intersection w using recursive calls as

illustrated in Fig. 4.4. Afterwards, we need to consider whether the path p between v and

w has enough room to store all tokens. If it does, we use a ROUTING VIA MATCHINGS

algorithm for trees to route tokens from w onto p, followed by a reversal to move these

tokens up to v. Otherwise, the path is short enough to move all tokens up to v by the same

ROUTING VIA MATCHINGS algorithm.

We now bound the routing time on Tw1 of MoveUpTo(w1), for any vertex

w1 ∈ V (T). First note that all operations on subtrees Tb of Tw1 are independent

and can be performed in parallel. Let w1, w2, . . . , wt be the sequence of intersection

115

Input : A vertex v in token tree T
1 function MoveUpTo(v):
2 if Tv contains no intersection vertices other than v then // Base case
3 for each leaf node u ∈ V (Tv) :
4 if u is the first leaf node then
5 Perform reversal from u to v.
6 else
7 Perform reversal from u to v, exclusive.
8 return
9 for each descendant b of v :

10 w := the intersection vertex in Tb closest to b // may include b
11 MoveUpTo(w)
12 m := the number of tokens from S in Tb
13 l(p) := the length of the path p from w to b in Tv
14 if l(p) ≥ m then // Enough room on p, form a path of

tokens at b
15 Route the m tokens in Tb to the first m vertices of p using ROUTING

VIA MATCHINGS.
16 Perform a reversal on the segment starting at w and ending at b.
17 else // Not enough room on p, form a tree of tokens

rooted at b
18 Route the m tokens in Tb as close as possible to b using ROUTING

VIA MATCHINGS.
19 if v has no token then // Put token on root v
20 Perform a reversal on the segment starting from v and ending at a vertex u

in Tv with a token such that no descendant of u has a token.

Algorithm 4.3.2: An algorithm that recursively moves all tokens from S that lie on Tv up
to an intersection vertex v.

116

w

routing via
matchings

v b

wv b

reverse segment
from b to w

wv b

(a) When l(p) ≥ m. In this case, l(p) = 7 ≥ 5 = m.

w

routing via
matchings

v

b

b

wv

b

b

(b) When l(p) < m. In this case, l(p) = 3 < 5 =
m.

Figure 4.4: An example of moving the m tokens in Tw up to b (Line 14–Line 18 in
Algorithm 4.3.2).

117

vertices that MoveUpTo(·) is recursively called on that dominates the routing time of

MoveUpTo(w1). Let dw, for w ∈ V (Tw1), be the distance of w to the furthest leaf node

in Tw. Assuming that the base case on Line 2 has not been reached, we have a routing

time of

T (w1) ≤ T (w2) +
dw1 − dw2

3
+O(k), (4.4)

where O(k) bounds the time required to route m ≤ k tokens on a tree of size at most 2m

following the recursive MoveUpTo(w2) call [152]. We expand the time cost T (wi) of

recursive calls until we reach the base case of wt to obtain

T (v) ≤ T (wt) +
t−1∑
i=1

(
dwi − dwi+1

3
+O(k)

)
(4.5)

= T (wt) +
dw1 − dwt

3
+ t ·O(k) ≤ dw1

3
+ (t+ 1)O(k). (4.6)

Since dv ≤ r and t ≤ k, this shows that compression can be performed in r/3 + O(k2)

time.

In general, a graph with radius r and diameter d will have d/2 ≤ r ≤ d. Using

Theorem 4.3.2, this implies that for a graph G and a sparse permutation with k = o(
√
r),

the bound for the routing time will be between d/3 + o(d) and 2d/3 + o(d). Thus, for

such sparse permutations, using reversals will always asymptotically give us a constant-

factor worst-case speedup over any SWAP-only protocol since rt(G) ≥ d. Furthermore,

for graphs with r = d/2, we can asymptotically achieve the full factor of 3 speedup.

118

Input : π, a permutation of a contiguous subset of [n].
1 function GenericDivideConquer(BinarySorter, π):
2 if |π| = 1 then
3 return ∅
4 B := BinaryLabeling(π)
5 ρ := BinarySorter(B)
6 π := π · ρ
7 ρ = ρ++ GenericDivideConquer(BinarySorter, π[0,

⌊
n
2

⌋
])

8 ρ = ρ++ GenericDivideConquer(BinarySorter, π[
⌊
n
2

⌋
+ 1, |π|])

9 return ρ

Algorithm 4.4.1: Divide-and-conquer algorithm for recursively sorting π.
BinaryLabeling(π) is a subroutine that uses Eq. (4.7) to transform π into a
bitstring, and BinarySorter is a subroutine that takes as input the resulting binary
string and returns an ordered reversal sequence ρ̄ that sorts it.

4.4 Algorithms for routing on the path

Our general approach to implementing permutations on the path relies on the

divide-and-conquer strategy described in Algorithm 4.4.1. It uses a correspondence

between implementing permutations and sorting binary strings, where the former can

be performed at twice the cost of the latter. This approach is inspired by [157] and [156]

who use the same method for routing by reversals in the sequential case.

First, we introduce a binary labeling using the indicator function

I(v) =


0 if v < n/2,

1 otherwise.

(4.7)

This function labels any permutation π ∈ Sn by the binary string I(π) :=

(I(π1), I(π2), . . . , I(πn)). Let π be the target permutation, and σ any permutation such

that I(πσ−1) = (0bn/2c1dn/2e). Then it follows that σ divides π into permutations πL, πR

119

acting only on the left and right halves of the path, respectively, i.e., π = πL · πR · σ. We

find and implement σ via a binary sorting subroutine, thereby reducing the problem into

two subproblems of length at most dn/2e that can be solved in parallel on disjoint sections

of the path. Proceeding by recursion until all subproblems are on sections of length

at most 1, the only possible permutation is the identity and π has been implemented.

Because disjoint permutations are implemented in parallel, the total routing time is

T (π) = T (σ) + max(T (πL), T (πR)).

We illustrate Algorithm 4.4.1 with an example, where the binary labels are indicated

below the corresponding destination indices:

7 6 0 2 5 1 3 4
label−−−→ 7 6 0 2 5 1 3 4

1 1 0 0 1 0 0 1
sort−−→ 0 3 1 2 5 7 6 4

0 0 0 0 1 1 1 1
label−−−→ 0 3 1 2 5 7 6 4

0 1 0 1 0 1 1 0

↓ sort

0 1 2 3 4 5 6 7

0 1 0 1 0 1 0 1
sort←−− 0 1 3 2 5 4 6 7

0 1 1 0 1 0 0 1
label←−−− 0 1 3 2 5 4 6 7

0 0 1 1 0 0 1 1
(4.8)

Each labeling and sorting step corresponds to an application of Eq. (4.7) and BinarySorter,

respectively, to each subproblem. Specifically, in Eq. (4.8), we use TBS (Algorithm 4.4.2)

to sort binary strings.

We present two algorithms for BinarySorter, which perform the work in our

sorting algorithm. The first of these binary sorting subroutines is Tripartite Binary

Sort (TBS, Algorithm 4.4.2). TBS works by splitting the binary string into nearly

equal (contiguous) thirds, recursively sorting these thirds, and merging the three sorted

thirds into one sorted sequence. We sort the outer thirds forwards and the middle third

backwards which allows us to merge the three segments using at most one reversal. For

120

Input : B, a binary string
1 function TripartiteBinarySort(B):
2 if |B| = 1 then
3 return ∅
4 m1 :=

⌊
|B|
3

⌋
5 m2 :=

⌊
2|B|

3

⌋
6 ρ := TripartiteBinarySort(B[0,m1])
7 ρ := ρ++ TripartiteBinarySort(B[m1 + 1,m2]⊕ 11 . . .1)
8 ρ := ρ++ TripartiteBinarySort(B[m2 + 1, |B|])
9 B ← apply reversals in ρ̄ to B

10 i := index of first 1 in B
11 j := index of last 0 in B
12 return ρ++ ρ(i, j)

Algorithm 4.4.2: Tripartite Binary Sort (TBS). We let ρ(i, j) denote a reversal on the
subsequence S[i, j] (inclusive of i and j). In line 7, ⊕11 . . .1 indicates that we flip all
the bits, so that we sort the middle third backwards.

example, we can sort a binary string as follows:

010011100011010011110111001

010011100 011010011 110111001

TBS ↓ TBS ↓ backwards ↓ TBS

000001111 111110000 000111111

00000111111111000000011111

00000000000011111111111111,

(4.9)

where the arrows with TBS indicate recursive calls to TBS and the bracket indicates the

reversal to merge the segments. Let GDC(TBS) denote Algorithm 4.4.1 when using TBS

to sort binary strings, where GDC stands for GenericDivideConquer.

The second algorithm is an adaptive version of TBS (Algorithm 4.4.3) that, instead

121

of using equal thirds, adaptively chooses the segments’ length. Adaptive TBS considers

every pair of partition points, 0 ≤ i ≤ j < n−1, that would split the binary sequence into

two or three sections: B[0, i], B[i + 1, j], and B[j + 1, n − 1] (where i = j corresponds

to no middle section). For each pair, it calculates the minimum cost to recursively sort

the sequence using these partition points. Since each section can be sorted in parallel, the

total sorting time depends on the maximum time needed to sort one of the three sections

and the cost of the final merging reversal. Let GDC(ATBS) denote Algorithm 4.4.1 when

using Adaptive TBS to sort binary strings.

Notice that the partition points selected by TBS are considered by the Adaptive

TBS algorithm and are selected by Adaptive TBS only if no other pair of partition points

yields a faster sorting time. Thus, for any permutation, the sequence of reversals found

by Adaptive TBS costs no more than that found by TBS. However, TBS is simpler

to implement and will be faster than Adaptive TBS in finding the sorting sequence of

reversals.

4.4.1 Worst-case bounds

In this section, we prove that all permutations of sufficiently large length n can be

sorted in time strictly less than n using reversals. Let nx(b) denote the number of times

character x ∈ {0, 1} appears in a binary string b, and let T (b) (resp., T (π)) denote the best

possible sorting time to sort b (resp., implement π) with reversals. Assume all logarithms

are base 2 unless specified otherwise.

Lemma 4.4.1. Let b ∈ {0, 1}n such that nx(b) < cn + O(log n), where c ∈ [0, 1/3] and

122

Input : B, a binary string
1 function AdaptiveTripartiteBinarySort(B):
2 ρ := ∅
3 for i = 0 to n− 2 :
4 for j = i to n− 2 :
5 ρ0 = AdaptiveTripartiteBinarySort(B[0, i])
6 c0 := cost(ρ0)
7 ρ1 = AdaptiveTripartiteBinarySort(B[i+ 1, j])
8 c1 := cost(ρ1)
9 ρ2 = AdaptiveTripartiteBinarySort(B[j + 1, n− 1])

10 c2 := cost(ρ2)
11 r := cost of merging reversal using i and j as partition points
12 if ρ = ∅ or max{c0, c1, c2}+ r < cost(ρ) then
13 ρ := ρ0 ++ ρ1 ++ ρ2

14 return ρ

Algorithm 4.4.3: Adaptive TBS. For the sake of clarity, we implement an exhaustive
search over all possible ways to choose the partition points. However, we note that the
optimal partition points can be found in polynomial time by using a dynamic programming
method [156].

x ∈ {0, 1}. Then, T (b) ≤ (c/3 + 7/18)n+O(log n).

Proof. To achieve this upper bound, we use TBS (Algorithm 4.4.2). There are blog3 nc

steps in the recursion, which we index by j ∈ {0, 1, . . . , blog3 nc}, with step 0

corresponding to the final merging step. Let |ρj| denote the size of the longest reversal in

recursive step j that merges the three sorted subsequences of size n/3j+1. The size of the

final merging reversal ρ0 can be bounded above by (c+ 2/3)n+O(log n) because |ρ0| is

maximized when every x is contained in the leftmost third if x = 1 or the rightmost third

123

if x = 0. So we have

T (b) ≤
(

log3 n∑
j=0

|ρj|
3

)
+O(log n) ≤

(
c

3
+

2

9

)
n+O(log n) +

(
log3 n∑
j=1

|ρj|
3

)
+O(log n)

(4.10)

≤
(
c

3
+

7

18

)
n+O(log n), (4.11)

where we used |ρj| ≤ n/3j for j ≥ 1.

Now we can prove a bound on the cost of a sorting series found by Adaptive TBS

for any binary string of length n.

Theorem 4.4.1. For all bit strings b ∈ {0, 1}n of arbitrary length n ∈ N, T (b) ≤

(1/2− ε)n+O(log n) ≈ 0.483n+O(log n), where ε = 1/3− 1/
√

10.

Proof. Let b ∈ {0, 1}n for some n ∈ N. Partition b into three sections b = b1b2b3

such that |b1| = |b3| = bn/3c and |b2| = n − 2bn/3c. Since bn/3c = n/3 − d where

d ∈ {0, 1/3, 2/3}, we write |b1| = |b2| = |b3| = n/3 + O(1) for the purposes of this

proof. Recall that if segments b1 and b3 are sorted forwards and segment b2 is sorted

backwards, the resulting segment can be sorted using a single reversal, ρ (see the example

in Eq. (4.9)). Then we have

T (b) ≤ max(T (b1), T ′(b2), T (b3)) +
|ρ|+ 1

3
, (4.12)

where T ′(b2) is the time to sort b2 backwards using reversals.

We proceed by induction on n. For the base case, it suffices to note that every

124

n/3 2n/3

2εn

3− 6ε

2εn

3− 6ε

n0(b1) < 2εn n1(b3) < 2εn

Figure 4.5: Case 2 of Theorem 4.4.1. If there are few zeros and ones in the leftmost and rightmost
thirds, respectively, we can shorten the middle section so that it can be sorted quickly. Then,
because each of the outer thirds contain far more zeros than ones (or vice versa), they can both can
be sorted quickly as well.

binary string can be sorted using reversals and, for finitely many values of n ∈ N, any

time needed to sort a binary string of length n exceeding (1/2− ε)n can be absorbed into

theO(log n) term. Now assume T (b) ≤ (1/2− ε) k+O(log k) for all k < n, b ∈ {0, 1}k.

Case 1: n0(b1) ≥ 2εn or n1(b3) ≥ 2εn. In this case, |ρ| ≤ n− 2εn, so

T (b) ≤ n− 2εn+ 1

3
+ max(T (b1), T ′(b2), T (b3)) ≤

(
1

2
− ε
)
n+O(log n) (4.13)

by the induction hypothesis.

Case 2: n0(b1) < 2εn and n1(b3) < 2εn. In this case, adjust the partition such that

|b1| = |b3| = n/3 + 2εn/(3− 6ε)−O(1) and consequently |b2| = n/3− 4εn/(3− 6ε) +

O(1), as depicted in Fig. 4.5. In this adjustment, at most 2εn/(3 − 6ε) zeros are added

to the segment b1 and likewise with ones to b3. Thus, n1(b3) ≤ 2εn + 2εn/(3 − 6ε) =

(1 + 1/(3− 6ε)) 2εn. Since n = (3− 6ε)|b1| −O(1), we have

n1(b3) ≤
(

1 +
1

3− 6ε

)
2ε((3− 6ε)|b1| −O(1)) = (2− 3ε)4ε|b1| −O(1). (4.14)

125

Let c = (2− 3ε)4ε = 2/15. Applying Lemma 4.4.1 with this value of c yields

T (b3) ≤
(

2

45
+

7

18

)
|b1|+O(log (|b1|)) =

(
1√
10
− 1

6

)
n+O(log n). (4.15)

Since |b1| = |b3|, we obtain the same bound T (b1) ≤ (1/
√

10 − 1/6)n + O(log n) by

applying Lemma 4.4.1 with the same value of c.

By the inductive hypothesis, T ′(b2) can be bounded above by

T ′(b2) ≤
(

1

2
− ε
)(

n

3
− 4ε

3− 6ε
n+O(1)

)
+O(log n) =

(
1√
10
− 1

6

)
n+O(log n).

(4.16)

Using Eq. (4.12) and the fact that |ρ| ≤ n, we get the bound

T (b) ≤
(

1√
10
− 1

6

)
n+O(log n) +

n+ 1

3
=

(
1

2
− ε
)
n+O(log n)

as claimed.

This bound on the cost of a sorting series found by Adaptive TBS for binary

sequences can easily be extended to a bound on the minimum sorting sequence for any

permutation of length n.

Corollary 4.4.2. For a length-n permutation π, T (π) ≤
(
1/3 +

√
2/5
)
n+ O(log2 n) ≈

0.9658n+O(log2 n).

Proof. To sort π, we turn it into a binary string b using Eq. (4.7). Then let ρ1, ρ2, . . . , ρm

be a sequence of reversals to sort b. If we apply the sequence to get π′ = πρ1ρ2 · · · ρm,

126

every element of π′ will be on the same half as its destination. We can then recursively

perform the same procedure on each half of π′, continuing down until every pair of

elements has been sorted.

This process requires blog nc steps, and at step i, there are 2i binary strings of length

n
2i

being sorted in parallel. This gives us the following bound to implement π:

T (π) ≤
logn∑
i=0

T (bi), (4.17)

where bi ∈ {0, 1}n/2i . Applying the bound from Theorem 4.4.1, we obtain

T (π) ≤
logn∑
i=0

T (bi) ≤
logn∑
i=0

((
1

6
+

1√
10

)
n

2i
+O(log(n/2i))

)

=

(
1

3
+

√
2

5

)
n+O(log2 n).

4.5 Average-case performance

So far we have presented worst-case bounds that provide a theoretical guarantee

on the speedup of quantum routing over classical routing. However, the bounds are not

known to be tight, and may not accurately capture the performance of the algorithm in

practice.

In this section we show better performance for the average-case routing time, the

expected routing time of the algorithm on a permutation chosen uniformly at random

from Sn. We present both theoretical and numerical results on the average routing time of

swap-based routing (such as odd-even sort) and quantum routing using TBS and ATBS.

127

0 100 200 300 400 500
n

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

n/n
OES
GDC(TBS)
GDC(ATBS)

(a) Normalized mean routing time with standard deviation.

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
log10 [n]

2.0

1.8

1.6

1.4

1.2

1.0

lo
g 1

0
[

n/n
]

OES
GDC(TBS)
GDC(ATBS)

(b) Log normalized standard deviation of the routing time.

Figure 4.6: The mean routing time and fit of the mean routing time for odd-even sort (OES), and
routing algorithms using Tripartite Binary Sort (GDC(TBS)) and Adaptive TBS (GDC(ATBS)).
We exhaustively search for n < 12 and sample 1000 permutations uniformly at random otherwise.
We show data for GDC(ATBS) only for n ≤ 207 because it becomes too slow after that point.
We find that the fit function µn = an + b

√
n + c fits the data with an R2 > 99.99% (all

three algorithms). For OES, the fit gives a ≈ 0.9999; for GDC(TBS), a ≈ 0.6599; and for
GDC(ATBS), a ≈ 0.6513. Similarly, for the standard deviation, we find that the fit function
σ2
n = an + b

√
n + c fits the data with R2 ≈ 99% (all three algorithms), suggesting that the

normalized deviation of the performance about mean scales as σn/n = Θ(n−0.5) asymptotically.

128

We show that on average, GDC(TBS) (and GDC(ATBS), whose sorting time on any

instance is at least as fast) beats swap-based routing by a constant factor 2/3. We have

the following two theorems, whose proofs can be found in Secs. 4.7 and 4.8, respectively.

Theorem 4.5.1. The average routing time of any SWAP-based procedure is lower bounded

by n− o(n).

Theorem 4.5.2. The average routing time of GDC(TBS) is 2n/3 +O(nα) for a constant

α ∈
(

1
2
, 1
)
.

These theorems provide average-case guarantees, yet do not give information about

the non-asymptotic behavior. Therefore, we test our algorithms on random permutations

for instances of intermediate size.

Our numerics [159] show that Algorithm 4.4.1 has an average routing time that

is well-approximated by c · n + o(n), where 2/3 . c < 1, using TBS or Adaptive

TBS as the binary sorting subroutine, for permutations generated uniformly at random.

Similarly, the performance of odd-even sort (OES) is well-approximated by n + o(n).

Furthermore, the advantage of quantum routing is evident even for fairly short paths. We

demonstrate this by sampling 1000 permutations uniformly from Sn for n ∈ [12, 512], and

running OES and GDC(TBS) on each permutation. Due to computational constraints,

GDC(ATBS) was run on sample permutations for lengths n ∈ [12, 206]. On an Intel

i7-6700HQ processor with a clock speed of 2.60 GHz, OES took about 0.04 seconds to

implement each permutation of length 512; GDC(TBS) took about 0.3 seconds; and, for

permutations of length 200, GDC(ATBS) took about 6 seconds.

The results of our experiments are summarized in Fig. 4.6. We find that the

129

mean normalized time costs for OES, GDC(TBS), and GDC(ATBS) are similar for

small n, but the latter two decrease steadily as the lengths of the permutations increase

while the former steadily increases. Furthermore, the average costs for GDC(TBS) and

GDC(ATBS) diverge from that of OES rather quickly, suggesting that GDC(TBS) and

GDC(ATBS) perform better on average for somewhat small permutations (n ≈ 50) as

well as asymptotically.

The linear coefficient a of the fit of µn for OES is a ≈ 0.9999 ≈ 1, which is

consistent with the asymptotic bound proven in Theorems 4.5.1 and 4.5.2. For the fit

of the mean time costs for GDC(TBS) and GDC(ATBS), we have a ≈ 0.6599 and a ≈

0.6513 respectively. The numerics suggest that the algorithm routing times agree with our

analytics, and are fast for instances of realistic size. For example, at n = 100, GDC(TBS)

and GDC(ATBS) have routing times of ∼ 0.75n and 0.72n, respectively. On the other

hand, OES routes in average time > 0.9n. For larger instances, the speedup approaches

the full factor of 2/3 monotonically. Moreover, the fits of the standard deviations suggest

σn/n = Θ(1/
√
n) asymptotically, which implies that as permutation length increases, the

distribution of routing times gets relatively tighter for all three algorithms. This suggests

that the average-case routing time may indeed be representative of typical performance

for our algorithms for permutations selected uniformly at random.

4.6 Conclusion

We have shown that our algorithm, GDC(ATBS) (i.e., Generic Divide-and-Conquer

with Adaptive TBS to sort binary strings), uses the fast state reversal primitive to

130

outperform any SWAP-based protocol when routing on the path in the worst and average

case. Recent work shows a lower bound on the time to perform a reversal on the

path graph of n/α, where α ≈ 4.5 [18]. Thus we know that the routing time cannot

be improved by more than a factor α over SWAPs, even with new techniques for

implementing reversals. However, it remains to understand the fastest possible routing

time on the path. Clearly, this is also lower bounded by n/α. Our work could be

improved by addressing the following two open questions: (i) how fast can state reversal

be implemented, and (ii) what is the fastest way of implementing a general permutation

using state reversal?

We believe that the upper bound in Corollary 4.4.2 can likely be decreased. For

example, in the proof of Lemma 4.4.1, we use a simple bound to show that the reversal

sequence found by GDC(TBS) sorts binary strings with fewer than cn ones sufficiently

fast for our purposes. It is possible that this bound can be decreased if we consider

the reversal sequence found by GDC(ATBS) instead. Additionally, in the proof of

Theorem 4.4.1, we only consider two pairs of partition points: one pair in each case

of the proof. This suggests that the bound in Theorem 4.4.1 might be decreased if the full

power of GDC(ATBS) could be analyzed.

Improving the algorithm itself is also a potential avenue to decrease the upper

bound in Corollary 4.4.2. For example, the generic divide-and-conquer approach in

Algorithm 4.4.1 focused on splitting the path exactly in half and recursing. An obvious

improvement would be to create an adaptive version of Algorithm 4.4.1 in a manner

similar to GDC(ATBS) where instead of splitting the path in half, the partition point

would be placed in the optimal spot. It is also possible that by going beyond the divide-

131

and-conquer approach, we could find faster reversal sequences and reduce the upper

bound even further.

Our algorithm uses reversals to show the first quantum speedup for unitary quantum

routing. It would be interesting to find other ways of implementing fast quantum routing

that are not necessarily based on reversals. Other primitives for rapidly routing quantum

information might be combined with classical strategies to develop fast general-purpose

routing algorithms, possibly with an asymptotic scaling advantage. Such primitives might

also take advantage of other resources, such as long-range Hamiltonians or the assistance

of entanglement and fast classical communication.

4.7 Average routing time using only SWAPs

In this section, we prove Theorem 4.5.1. First, define the infinity distance

d∞ : Sn → N to be d∞(π) = max1≤i≤n |πi − i|. Note that 0 ≤ d∞(π) ≤ n − 1.

Finally, define the set of permutations of length n with infinity distance at most k to be

Bk,n = {π ∈ Sn : d∞(π) ≤ k}.

The infinity distance is crucially tied to the performance of odd-even sort, and

indeed, any SWAP-based routing algorithm. For any permutation π of length n, the routing

time of any SWAP-based algorithm is bounded below by d∞(π), since the element furthest

from its destination must be swapped at least d∞(π) times, and each of those SWAPs must

occur sequentially. To show that the average routing time of any SWAP-based protocol is

asymptotically at least n, we first show that |B(1−ε)n,n|/n!→ 0 for all 0 < ε ≤ 1/2.

Schwartz and Vontobel [160] present an upper bound on |Bk,n| that was proved

132

in [161] and [162]:

Lemma 4.7.1. For all 0 < r < 1, |Brn,n| ≤ Φ(rn, n), where

Φ(k, n) =


((2k + 1)!)

n−2k
2k+1

∏2k
i=k+1(i!)2/i if 0 < k/n ≤ 1

2

(n!)
2k+2−n

n

∏n−1
i=k+1(i!)2/i if 1

2
≤ k/n < 1.

(4.18)

Proof. Note that r = k/n. For the case of 0 < r ≤ 1/2, refer to [161] for a proof. For

the case of 1/2 ≤ r < 1, refer to [162] for a proof.

Lemma 4.7.2.

n! = Θ
(√

n
(n
e

)n)
(4.19)

Proof. This follows from well-known precise bounds for Stirling’s formula:

√
2πn

(n
e

)n
e

1
12n+1 ≤ n! ≤

√
2πn

(n
e

)n
e

1
12n (4.20)

√
2πn

(n
e

)n
≤ n! ≤

√
2πn

(n
e

)n
e (4.21)

(see for example [163]).

With Lemmas 4.7.1 and 4.7.2 in hand, we proceed with the following theorem:

Theorem 4.7.1. For all 0 < ε ≤ 1/2, limn→∞ |B(1−ε)n,n|/n! = 0. In other words, the

proportion of permutations of length n with infinity distance less than (1 − ε)n vanishes

asymptotically.

Proof. Lemma 4.7.1 implies that |B(1−ε)n,n|/n! ≤ Φ((1 − ε)n, n)/n!. The constraint

133

0 < ε ≤ 1/2 stipulates that we are in the regime where 1/2 ≤ r < 1, since r = 1 − ε.

Then we use Lemma 4.7.2 to simplify any factorials that appear. Substituting Eq. (4.18)

and simplifying, we have

Φ ((1− ε)n, n)

n!
=

∏n−1
i=(1−ε)n+1(i!)2/i

(n!)2ε−2/n
= O

 e2εn−2

n2εn−2

n−1∏
i=(1−ε)n+1

i2+1/i

e2

 . (4.22)

We note that i1/i terms can be bounded by

n−1∏
i=(1−ε)n+1

i
1
i ≤

n−1∏
i=(1−ε)n+1

n
1

(1−ε)n ≤ n
ε

1−ε ≤ n (4.23)

since ε ≤ 1/2. Now we have

O

 e2εn−2

n2εn−2

n−1∏
i=(1−ε)n+1

i2+1/i

e2

 = O

 n

n2εn−2

n−1∏
i=(1−ε)n+1

i2

 (4.24)

= O

(
n

n2εn−2

(
(n− 1)!

((1− ε)n+ 1)!

)2
)

(4.25)

= O

(
n

n2εn−2e2εn

(n− 1)2n−1

((1− ε)n+ 1)2(1−ε)n+2

)
(4.26)

= O

(
n

n2εn−2e2εn

n2n

((1− ε)n)2(1−ε)n

)
(4.27)

= O

(
n3

exp ((ln(1− ε)(1− ε) + ε)2n)

)
. (4.28)

Since ln(1− ε)(1− ε) + ε > 0 for ε > 0, this vanishes in the limit of large n.

Now we prove the theorem.

Proof of Theorem 4.5.1. Let T̄ denote the average routing time of any SWAP-based

protocol. Consider a random permutation π drawn uniformly from Sn. Due to

134

Theorem 4.7.1, π will belong in B(1−ε)n,n with vanishing probability, for all 0 < ε ≤ 1/2.

Therefore, for any fixed 0 < ε ≤ 1/2 as n→∞, (1−ε)n < E [d∞(π)]. This translates to

an average routing time of at least n−o(n) because we have, asymptotically, (1−ε)n ≤ T̄

for all such ε.

4.8 Average routing time using TBS

In this section, we prove Theorem 4.5.2, which characterizes the average-case

performance of TBS (Algorithm 4.4.2). This approach consists of two steps: a recursive

call on three equal partitions of the path (of length n/3 each), and a merge step involving

a single reversal.

We denote the uniform distribution over a set S as U(S). The set of all n-bit strings

is denoted Bn, where B = {0, 1}. Similarly, the set of all n-bit strings with Hamming

weight k is denoted Bnk . For simplicity, assume that n is even. We denote the runtime of

TBS on b ∈ Bn by T (b).

When running GDC(TBS) on a given permutation π, the input bit string for TBS is

b = I(π), where the indicator function I is defined in Eq. (4.7). We wish to show that, in

expectation over all permutations π, the corresponding bit strings are quick to sort. First,

we show that it suffices to consider uniformly random sequences from Bnn/2.

Lemma 4.8.1. If π ∼ U(Sn), then I(π) ∼ U(Bnn/2).

Proof. We use a counting argument. The number of permutations π such that I(π) ∈ Bnn/2

is (n/2)!(n/2)!, since we can freely assign index labels from {1, 2, . . . , n/2} to the 0 bits

of I(π), and from {n/2 + 1, . . . , n} to the 1 bits of I(π). Therefore, for a uniformly

135

random π and arbitrary b ∈ Bnn/2,

Pr(I(π) = b) =
(n/2)!(n/2)!

n!
=

1(
n
n/2

) =
1

|Bnn/2|
. (4.29)

Therefore, I(π) ∼ U(Bnn/2).

While Bnn/2 is easier to work with than Sn, the constraint on the Hamming

weight still poses an issue when we try to analyze the runtime recursively. To address

this, Lemma 4.8.2 below shows that relaxing from U(Bnn/2) to U(Bn) does not affect

expectation values significantly.

We give a recursive form for the runtime of TBS. We use the following convention

for the substrings of an arbitrary n-bit string a: if a is divided into 3 segments, we label

the segments a0.0, a0.1, a0.2 from left to right. Subsequent thirds are labeled analogously

by ternary fractions. For example, the leftmost third of the middle third is denoted a0.10,

and so on. Then, the runtime of TBS on string a can be bounded by

T (a) ≤ max
i∈{ 0,1,2 }

T (a0.i) +
n1(a0.0) + n1(a0.2) + n/3 + 1

3
, (4.30)

where a is the bitwise complement of bit string a and n1(a) denotes the Hamming weight

of a. Logically, the first term on the right-hand side is a recursive call to sort the thirds,

while the second term is the time taken to merge the sorted subsequences on the thirds

using a reversal. Each term T (a0.i) can be broken down recursively until all subsequences

136

are of length 1. This yields the general formula

T (b) ≤ 1

3

dlog3(n)e∑
r=1

max
i∈{ 0,1,2 }r−1

{n1(a0.i0) + n1(a0.i2)}+ n/3r + 1

 , (4.31)

where i ∈ ∅ indicates the empty string.

Lemma 4.8.2. Let a ∼ U(Bn) and b ∼ U(Bnn/2). Then

E[T (b)] ≤ E[T (a)] + Õ(nα) (4.32)

where α ∈ (1
2
, 1) is a constant.

The intuition behind this lemma is that by the law of large numbers, the deviation of

the Hamming weight from n/2 is subleading in n, and the TBS runtime does not change

significantly if the input string is altered in a subleading number of places.

Proof. Consider an arbitrary bit string a, and apply the following transformation. If

n1(a) = k ≥ n/2, then flip k−n/2 ones chosen uniformly randomly to zero. If k < n/2,

flip n/2−k zeros to ones. Call this stochastic function f(a). Then, for all a, f(a) ∈ Bnn/2,

and for a random string a ∼ U(Bn), we claim that f(a) ∼ U(Bnn/2). In other words, f

maps the uniform distribution on Bn to the uniform distribution on Bnn/2.

We show this by calculating the probability Pr(f(a) = b), for arbitrary b ∈ Bnn/2.

A string a can map to b under f only if a and b disagree in the same direction: if, WLOG,

n1(a) ≥ n1(b), then a must take value 1 wherever a, b disagree (and 0 if n1(a) ≤ n1(b)).

We denote this property by a � b. The probability of picking a uniformly random a such

that a � b with x disagreements between them is
(
n/2
x

)
, since n0(b) = n/2. Next, the

137

probability that f maps a to b is
(
n/2+x
x

)
. Combining these, we have

Pr(f(a) = b) =

n/2∑
x=−n/2

Pr
(
a � b, n1(a) =

n

2
+ x
)
· Pr
(
f(a) = b | a � b, n1(a) =

n

2
+ x
)
,

(4.33)

=

n/2∑
x=−n/2

(
n/2
|x|

)
2n
· 1(

n/2+|x|
|x|

) , (4.34)

=
1(
n
n/2

) n/2∑
x=−n/2

(
n

n/2−x

)
2n

, (4.35)

=
1(
n
n/2

) =
1

|Bnn/2|
. (4.36)

Therefore, f(a) ∼ U(Bnn/2). Thus, f allows us to simulate the uniform distribution on

Bnn/2 starting from the uniform distribution on Bn.

Now we bound the runtime of TBS on f(a) in terms of the runtime on a fixed a.

Fix some α ∈ (1
2
, 1). We know that n1(f(a)) = n/2, and suppose |n1(a)− n/2| ≤ nα.

Since f(a) differs from a in at most nα places, then at level r of the TBS recursion

(see Eq. (4.31)), the runtimes of a and f(a) differ by at most 1/3 ·min{2n/3r, nα}. This

is because the runtimes can differ by at most two times the length of the subsequence.

138

Therefore, the total runtime difference is bounded by

∆T ≤ 1

3

dlog3(n)e∑
r=1

min
{2n

3r
, nα
}
, (4.37)

=
1

3

dlog3(2n1−α)e∑
r=1

nα + 2

dlog3(n)e∑
r=dlog3(2n1−α)e+1

n

3r

 , (4.38)

=
1

3

nα log(2nα/3) + 2

blog3(nα/2)c−1∑
s=0

3s

 (4.39)

=
1

3
(nα log(2nα/3) + nα/2− 1) = Õ(nα). (4.40)

On the other hand, if |n1(a)− n/2| ≥ nα/2, we simply bound the runtime by that of

OES, which is at most n.

Now consider a ∼ U(Bn) and b = f(a) ∼ U(Bnn/2). Since n1(a) has the

binomial distribution B(n, 1/2), where B(k, p) is the sum of k Bernoulli random variables

with success probability p, the Chernoff bound shows that deviation from the mean is

exponentially suppressed, i.e.,

Pr(|n1(a)− n/2| ≥ nα) = exp(−O(n2α−1)). (4.41)

Therefore, the deviation in the expectation values is bounded by

|E[T (f(a))]− E[T (a)]| ≤ n exp(−O(n2α−1)) + c(1− exp(−O(n2α−1)))nα log(n)

(4.42)

= Õ(nα), (4.43)

139

where c is a constant. Finally, we conclude that

E[T (b)] ≤ E[T (a)] + Õ(nα) (4.44)

as claimed.

Next, we prove the main result of this section, namely, that the runtime of

GDC(TBS) is 2n/3 up to additive subleading terms.

Proof of Theorem 4.5.2. We first prove properties for sorting a random n-bit string a ∼

U(Bn) and then apply this to the problem of sorting b ∼ U(Bnn/2) using Lemmas 4.8.1

and 4.8.2.

The expected runtime for TBS can be calculated using the recursive formula

in Eq. (4.31):

E[T (a)] ≤ 1

3

log3(n)∑
r=1

E
[

max
i∈{ 0,1,2 }r−1

{n1(a0.i0) + n1(a0.i2)}
]

+ n/3r + 1

 . (4.45)

The summand contains an expectation of a maximum over Hamming weights of i.i.d.

uniformly random substrings of length n/3r, which is equivalent to a binomial distribution

B(n/3r, 1/2) where we have n/3r Bernoulli trials with success probability 1/2. Because

of independence, if we sample X1, X2 ∼ B(n/3r, 1/2), then X1 + X2 ∼ B(2n/3r, 1/2).

Using Lemma 4.8.3 with m = 3r−1, the expected maximum can be bounded by

n

3r
+O

(√
(n/3r) log(3r−1n/3r)

)
=

n

3r
+ Õ

(
n1/2

)
(4.46)

140

since the second term is largest when r = O(1). Therefore,

E[T (a)] ≤ 1

3

log3(n)∑
r=1

2n

3r

+ Õ
(
n1/2

)
=
n

3
+ Õ

(
n1/2

)
. (4.47)

Lemma 4.8.2 then gives E[T (b)] ≤ n
3

+ Õ(nα).

The routing algorithm GDC(TBS) proceeds by calling TBS on the full path, and

then in parallel on the two disjoint sub-paths of length n/2. We show that the distributions

of the left and right halves are uniform if the input permutation is sampled uniformly as

π ∼ U(Sn). There exists a bijective mapping g such that g(π) = (b, πL, πR) ∈ Bnn/2 ×

Sn/2 × Sn/2 for any π ∈ Sn since

|∗| Sn = n! =

(
n

n/2

)(n
2

)
!
(n

2

)
! = |∗|Bnn/2 × Sn/2 × Sn/2. (4.48)

In particular, g can be defined so that b specifies which entries are taken to the first n/2

positions—say, without changing the relative ordering of the entries mapped to the first

n/2 positions or the entries mapped to the last n/2 positions—and πL and πR specify

the residual permutations on the first and last n/2 positions, respectively. Given g(π) =

(b, πL, πR), TBS only has access to b. After sorting, TBS can only perform deterministic

permutations µL(b), µR(b) ∈ Sn/2 on the left and right halves, respectively, that depend

only on b. Thus TBS performs the mappings πL 7→ πL ◦ (µL(b)) and πR 7→ πR ◦ (µR(b))

on the output. Now it is easy to see that when πL, πR ∼ U(Sn/2), the output is also

uniform because the TBS mapping is independent of the relative permutations on the left

and right halves.

141

More generally, we see that a uniform distribution over permutations U(Sn) is

mapped to two uniform permutations on the left and right half, respectively. Symbolically,

for, π ∼ U(Sn), we have that

g(π) = (b, πL, πR) ∼ U(Bnn/2 × Sn/2 × Sn/2) = U(Bnn/2)× U(Sn/2)× U(Sn/2). (4.49)

As shown earlier, given uniform distributions over left and right permutations, the output

is also uniform. By induction, all permutations in the recursive steps are uniform.

We therefore get a sum of expected TBS runtime on bit strings of lengths n/3r, i.e.,

log2 n∑
r=1

E[T (br)] ≤
log2 n∑
r=1

E[T (ar)] + Õ
((n

2r−1

)α)
≤ 2n

3
+ Õ(nα) (4.50)

where, by Lemma 4.8.1 and the uniformity of permutations in recursive calls, we need

only consider br ∼ U(Bn/2
r

n/2r−1) and we bound the expected runtime using Lemma 4.8.2

with ar ∼ U(Bn/2r−1
).

We end with a lemma about the order statistics of binomial random variables used

in the proof of the main theorem.

Lemma 4.8.3. Given m i.i.d. samples from the binomial distribution Xi ∼ B(n, p) with

i ∈ [m], and p ∈ [0, 1], the maximum Y = maxiXi satisfies

E[Y] < pn+O
(√

n log(mn)
)
. (4.51)

Proof. We use Hoeffding’s inequality for the Bernoulli random variable X ∼ B(n, p),

142

which states that

Pr(X ≥ (p+ ε)n) ≤ exp(−2nε2) ∀ε ≥ 0. (4.52)

Pick ε =
√

c
2n

log(mn), where c > 0 is a constant. For this choice, we have

Pr(Xi ≥ (p+ ε)n) ≤
(

1

mn

)c
(4.53)

for every i = 1, . . . ,m. Then the probability that Y < (p + ε)n is identical to the

probability that Xi < (p+ ε)n for every i, which for i.i.d Xi is given by

Pr(Y < (p+ ε)n) = Pr(X < (p+ ε)n)m >

(
1− 1

(mn)c

)m
. (4.54)

Using Bernoulli’s inequality ((1 + x)r ≥ 1 + rx for x ≥ −1), we can simplify the above

bound to

Pr(Y < (p+ ε)n)m > 1−m1−cn−c. (4.55)

143

Finally, we bound the expected value of Y by an explicit weighted sum over its range:

E[Y] =
n∑
k=0

Pr(Y = k) · k (4.56)

=

b(p+ε)nc∑
k=0

Pr(Y = k) · k +
n∑

k=b(p+ε)nc+1

Pr(Y = k) · k (4.57)

≤
b(p+ε)nc∑
k=0

Pr(Y = k)) · k + n ·
n∑

k=b(p+ε)nc+1

Pr(Y = k) (4.58)

≤
b(p+ε)nc∑
k=0

Pr(Y = k) · k + (mn)1−c (4.59)

≤ (p+ ε)n+ (mn)1−c. (4.60)

Since (mn)1−c < 1 for c > 1,

E[Y] <

⌈
pn+ 1 +

√
cn

2
log(mn)

⌉
= pn+O(

√
n log(mn)) (4.61)

as claimed.

144

Chapter 5: Bang-bang control as a design principle for classical and

quantum optimization algorithms

As quantum computing enters the so-called NISQ era [4], some focus has started

shifting to noisy, shallow digital computations, and a need to re-examine existing quantum

heuristic algorithms has emerged. The quantum adiabatic optimization algorithm (QAO),

introduced in the previous decade [26], provides a paradigm for quantum speedups in

optimization problems, where one performs a quasistatic Schrödinger evolution from an

initial quantum state into the ground state of computational or physical interest. Runtime

bounds for QAO typically depend, via adiabatic theorems, on the minimum spectral gap

between the ground state and first excited state.

The Quantum Approximate Optimization Algorithm (QAOA) provides an alternative

framework to designing quantum optimization algorithms, which is based on parameterized

families of quantum circuits with adjustable parameters [28, 164]. Such variational

circuits are parameterized by a depth, an initial quantum state, and a set of Hamiltonian

operators under which the state can evolve. An instance of a variational circuit is

further specified by a series of (labeled) evolution times that determine which operator

is applied and for how long. Along with QAOA, several other recent models of heuristic

computation fit into the variational circuit paradigm [165–169].

145

A primary distinguishing feature between the quasistatic paradigm of QAO and

simulated annealing (SA) and the variational circuit paradigm is in the design of their

evolution schedules, from quasistatic to a rapidly switching, or bang-bang, schedule.

Recently, it was observed [24, 25] that the Pontryagin Minimum Principle [23] implies

that variational methods that employ a bang-bang evolution schedule are sufficient

for optimality of the optimization protocol. Furthermore, the paper that introduces

QAOA [28] also gives evidence pointing to an exponential speedup between QAOA

and QAO. This raises two questions: Firstly, can a design shift from quasistatic to

bang-bang yield provable superpolynomial improvements in the runtime, or are the

two frameworks polynomially equivalent? Secondly, can the same control theoretic

reasoning be applied to the design of classical optimization algorithms? In this work, we

answer these questions by studying the performance of bang-bang controlled algorithms

on certain well-studied instances, and make comparisons to the quasistatic, annealing-

type algorithms. We prove that, on these instances, going from quasistatic scheduling

to bang-bang can bring about an exponential speedup for both classical and quantum

optimization. We also discuss the applicability and potential limitations of the optimal

control framework to the problem of designing heuristic optimization algorithms.

5.1 Summary of results

The main results of this chapter may be found in Sec. 5.7, where we study the

performance of four candidate algorithms given in Table 5.2 on two benchmarking

instances, and find that the bang-bang control algorithms exponentially outperform both

146

classical and quantum annealing-based algorithms. These results are also summarized in

Table 5.1.

Instance Annealing-based Bang-bang

QAO SA QAOA BBSA

Bush, λ ≥ 1 poly(n) [170] exp(n) [170] O(1) Õ (n3.5...)

Bush, λ < 1 exp(n) [170] exp(n) [170] O(1) Õ (n3.5...)
Spike, 2a+ b ≤ 1 poly(n) [171] exp(n) [170] O(1) O(n)
Spike, 2a+ b > 1 exp(n) [171] exp(n) [170] O(1) O(n)

Table 5.1: Performance of the four algorithms, summarized. This work gives new results for
QAOA (Sec. 5.7.3) and BBSA (Sec. 5.7.2). For the two instances studied, we distinguish different
parameter regimes. For the Bush instance, the performance of QAO depends on the choice
of mixer Bλ (see Eq. 5.23). For Spike, the QAO performance depends on spike parameters
a and b. We see that bang-bang control algorithms outperform their (quantum and classical)
annealing-based counterparts for these instances. Sources for existing results are cited, and the
new contributions are referenced by the relevant sections.

In addition, we study the performance of single-round QAOA (or QAOA1) on

a more general class of symmetric cost functions, and give sufficient conditions under

which QAOA1 can successfully find minima for these functions. These results are stated

in Lemma 5.7.1 and Theorem 5.7.1. In Sec. 5.5, we elaborate on the theoretical motivation

behind choosing a bang-bang schedule and the caveats therein.

5.2 Preliminaries

First, we present some notation that will be used throughout the chapter. Any

problem instance of size n will be given as a constraint satisfaction problem on Boolean

strings of length n. An n-bit string will be expressed as a boldfaced variable, e.g.

z ∈ {0, 1}n, in analogy with vector quantities. Variables denoting bits of a string will

be expressed in normal font (e.g. the i-th bit of z is zi). Similarly, the Hamming weight

147

of a string, which is defined as the (integer) 1-norm of the bit string, or the number of 1’s

in a bit string,

|z| :=
n∑
i=1

zi (5.1)

will also be represented by non-bold letters such as w, v to indicate that it is a scalar

quantity like the value of a bit.

We will be interested in expressing states by labels such as a string variable z, or

scalar variables w, z, etc. In either case, the convention will be to use l2-normalized kets

|·〉, or l1-normalized vectors, for which we will use the notation |·). In particular, a state

labeled by Hamming weight w will denote the equal superposition over all bit strings with

that Hamming weight,

|w〉 :=
1√(
n
w

) ∑
|z|=w

|z〉 , |w) :=
1(
n
w

) ∑
|z|=w

|z) (5.2)

Problem instances are given as a cost function on bit strings,

c : {0, 1}n → Z (5.3)

c(z) = cost of bit string z. (5.4)

There is a natural Hamiltonian operator C (and corresponding unitary C) associated with

this function that is diagonal in the computational basis, with eigenvalue c(z) for every

148

corresponding eigenvector z ∈ {0, 1}n. Explicitly,

C :=
∑

z∈{0,1}n
c(z) |z〉 〈z| , C(γ) := e−iγC (5.5)

Classical n-bit strings are naturally representable as vertices of an n-dimensional

hypercube graph. This is often the representation of choice, as walks on the hypercube are

generated by sequences of bit flips on the string, which correspond to the 1-local quantum

operator

B := −
n∑
i=1

Xi, B(β) := e−iβB (5.6)

where Xi ≡ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗X ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−i

, and X =

0 1

1 0

 is the Pauli-X operator.

Unitary evolutions of a quantum state underB,C achieve amplitude mixing and coherent,

cost-dependent phase rotations, respectively. Canonically, both QAO and QAOA (see

Table 5.2 for full names) use Hamiltonians of the form B and C. However, as discussed

towards the end of Sec. 5.7.1, other choices can affect the performance on a given

instance.

Abbreviation Name of Algorithm Reference

QAO Quantum adiabatic optimization (algorithm) [26]
SA Simulated annealing [170]

QAOA Quantum approximate optimization algorithm [28]
BBSA Bang-bang simulated annealing § 5.4.1

Table 5.2: Table of abbreviations for the algorithms studied in this chapter. The last algorithm,
BBSA, is introduced in this chapter.

Now, we will describe the candidate algorithms listed in Table 5.2. It will become

149

evident that these algorithms can all be expressed in the control framework given in

Appendix 5.8. This connection is important, as it allows us to borrow existing results

from optimal control theory to the setting of heuristic optimization.

5.3 Annealing-based algorithms

5.3.1 Simulated annealing

Simulated Annealing (SA) is a family of classical heuristic optimization algorithms

that seek to minimize a potential via the evolution of a classical probability distribution

under a simulated cooling process. The dynamics of the distribution are governed by two

competing influences:

• Descent with respect to the cost function c(z).

• Thermal fluctuations that kick the walker in a random uphill direction with

Boltzmann

probability, defined according to a controlled temperature parameter τ .

In practice, the above dynamics may be achieved via the following random walk:

1. Initialize the walker at location r1.

2. Run a p-round annealing schedule, where the i-th round is given by ti ∈ Z≥0 time

steps and a temperature parameter τi ∈ R≥0. For index i ∈ [p], run:

(a) For ti iterations, repeat:

150

i. Pick direction e uniformly at random from available local unit displacement

vectors.

ii. Let δe := c(ri ⊕ e) − c(ri) be the cost increase in moving walker from

current position ri to new position ri+1 = ri ⊕ e.

iii. If δe ≤ 0, move to new location with certainty. Otherwise, move with

Boltzmann probability e−δe/τi , where τi is the current temperature in the

schedule. In other words,

Pr(ri → ri ⊕ e) = min
{

1, e−δe/τi
}
. (5.7)

3. Repeat steps 1-2 several times, and report the minimal sampled configuration z∗

and the corresponding cost c(z∗).

The temperature schedule τ = (τ1, τ2, . . . , τp) must be optimized in order to

achieve a final distribution that is well-supported on low-energy states (including the

global minima, ideally). In practice, one applies a finite “cooling” schedule in which

the elements of τ descend from ∞ to 0. At each temperature τi, the time steps ti

may be seen as relaxation time steps, where the walker distribution equilibrates under

thermal exchange with the simulated bath at temperature τi. In the limit of infinitely slow,

monotonically decreasing temperature schedules that satisfy certain additional conditions

arising from deep local minima in the problem instance, simulated annealing always

converges to the lowest-cost configuration [172–175]. However, finite-time schedules

and a finite relaxation time per temperature step can undo the theoretical guarantee.

The position update of the walkers in the above scheme is implemented via

151

the Metropolis-Hastings rule, where uphill motions are suppressed with Boltzmann

probability. This implies that steeper climbs quickly become exponentially unlikely,

resulting in an effective trapping of walkers in basins of depth ∼ τi. Within these basins,

sufficiently high relaxation times allow the walkers to find deep minima. Intuitively, the

walkers are allowed to climb barriers “just high enough” so as to settle into progressively

deeper minima, as τi decreases through the course of the algorithm.

The above process may be seen as a discretization of an approximately equivalent

continuous-time Markov process. In the parlance of control introduced in Appendix 5.8,

the dynamics of the walker distribution is generated by a stochastic operator H (τ(t))

that is singly controlled by the time-dependent temperature parameter τ(t). For two

neighboring positions z, z′ in the space with a mutual displacement unit vector e = z′−z,

the corresponding matrix element may be written as

H(τ)〈zz′〉 =



W(τ, z), if z = z′

1, if δe ≤ 0

e−δec/τ , if δe > 0

(5.8)

where the diagonal term termW(τ, z) is the negative column sum of the z column

of H(τ), a condition which ensures stochasticity of the Markov process. Then, the

continuous-time dynamics of the probability vector are given by the differential equation

Ṗ (t) = −H(τ(t))P (t) (5.9)

152

Under a discretization of the above into small time slices ∆ti (such that

||H(τi)||∆ti < 1), and approximating the temperature schedule as a piecewise constant

function, we may rewrite the continuous process as a Markov chain where the dynamics

at the i-th slice are given by the stochastic matrix 1−H(τi)∆ti. This corresponds to the

i-th step of the discrete random walk.

The infinite-temperature and zero-temperature limits of H are important special

cases. At τ =∞, walkers choose random directions and walk with certainty, independent

of the potential. This corresponds to the case of diffusion. On the other hand, at τ = 0,

walkers walk in a randomly chosen direction if and only if the resulting cost is no greater

than the current cost. This is what we may call randomized gradient descent. We will

denote these operators by D,G respectively and give their form below:

D〈zz′〉 := H(0)〈zz′〉 =



−n(z), if z = z′

1, if δe ≤ 0

1, if δe > 0

(5.10)

G〈zz′〉 := H(∞)〈zz′〉 =



−n<(z), if z = z′

1, if δe ≤ 0

0, if δe > 0

(5.11)

where n(z) is the number of neighbors, and n<(z) the number of “downhill” neighbors,

of z. (Note: For all bit strings z, n(z) = n on the usual n-dimensional hypercube.)

153

5.3.2 SA with linear update

Under Metropolis-Hastings Monte Carlo, we see that the dynamics evolve under

H(τ), which is an operator controlled by the temperature schedule τ . The obvious bang-

bang analogue to this is to alternate between periods of zero- and infinite-temperature

Metropolis moves, which is the algorithm introduced in Sec. 5.4.1. However, to argue

that bang-bang control is optimal using the optimal control framework (as in Sec. 5.5),

we must first ensure that the dynamics are linear in the controls. In this section, we present

a linearized variant of SA, so that within algorithms of this class, it will be the case that

bang-bang control is optimal as a consequence of the Pontryagin Minimum Principle.

Suppose that instead of Metropolis-Hastings probability min
{

1, e−δe/τ
}

, we use a

probability uΘ(δe), where Θ(·) is the Heaviside step function, and u ∈ [0, 1] is a control

parameter. That is,

Pr(z→ z⊕ e) =


1, if δe ≤ 0

u, if δe > 0

(5.12)

This rule is qualitatively different from Metropolis-Hastings, since it attaches importance

not to the exact energy difference between neighboring states, but only to its sign.

Furthermore, the update rule is not guaranteed to satisfy physical prerequisites such as

detailed balance that guarantee the convergence of the limiting distribution. However, it

is a valid update rule, and we will call SA equipped with these dynamics linear update

SA.

Importantly, linear update SA is expressible in the linear control framework. It is

possible to write the Markov matrix H(u) corresponding to the continuous version of

154

Eq. 5.12 as a sum of the diffusion matrix D and the randomized gradient descent operator

G,

H(u) = uD + (1− u)G (5.13)

Finally, we see that, H(u = 0) = D and H(u = 0) = G, thus reproducing the operators

appearing in standard SA in the limit of infinite and zero temperature (i.e. u = 0, 1),

which are the relevant parameter values under bang-bang control.

5.3.3 QAO

The adiabatic algorithm, proposed in 2000 by Farhi, Goldstone and Gutmann [26],

is a (quantum) heuristic combinatorial optimization algorithm based upon the adiabatic

theorem from quantum mechanics. The adiabatic theorem, loosely stated, says that a

system evolving under a time-varying Hamiltonian, when initialized in a ground state,

stays in the instantaneous ground state as the Hamiltonian is varied slowly in time. The

recipe to turn this statement into an algorithm for finding global minima is as follows:

1. Initialize the system in an easily preparable ground state of a Hamiltonian B.

2. Read the problem instance (cost function c(z)), and map it to an equivalent

Hamiltonian C, as in Eq. 5.5.

3. Implement Schrödinger evolution of the state over the time interval [0, T] under a

controlled Hamiltonian H(s) = u1(s)B + u2(s)C, where s = t/T is the scaled

time parameter, and u1, u2 are functions of s that describe the annealing schedule.

The schedule satisfies u1(0) = 1− u2(0) = 1, and u1(1) = 1− u2(1) = 0.

155

4. Measure the resulting state in the computational basis.

Under adiabaticity (i.e. when the schedule varies slowly in s), the above algorithm

evolves the initial state from the ground state of B to that of C, which is a state that

encodes the solution to optimization problem. In particular, the algorithm succeeds if

the rate is slower than inverse polynomial in the first spectral gap λ(s) (i.e. the energy

difference between the ground state and the first excited state) at all times. Typically, this

yields a condition on the true runtime T [176, 177]:

T & O

(
1

λ2

)
(5.14)

where λ = mins λs. Therefore, the guarantee of success of an adiabatic protocol lies in

knowing that the minimum gap λ does not scale super-polynomially with n. However, it

should be noted that this does not rule out good empirical performance. In fact, by cleverly

varying speed as a function of the instantaneous spectral gap, important speedups such as

the Grover speedup [178], and the exponential speedup for glued trees, [179] (where,

strictly speaking, the protocol is non-adiabatic) can be recovered.

Like Linear Update SA, the QAO Hamiltonian

H(u1, u2) = u1B + u2C (5.15)

fits into the linear control framework [24]. In fact, we may simplify the above Hamiltonian

to a singly-controlled Hamiltonian as follows. In practical applications of QAO, there is

a maximum magnitude threshold (say J) for the controls, given by hardware constraints.

156

We assume that this cutoff does not scale with the input size of the instance. Assume

also that the lower cutoff for both u1 and u2 is 0. In other words, u1, u2 ∈ [0, J]. These

design constraints give us a restricted version of QAO where the controls are non-negative

and bounded. This restriction is applied simply to state our algorithms within a uniform,

linear control framework. Adiabatic algorithms for the instances studied in later sections

fit within this framework.

Then, observe that when u1 +u2 > 0, we can rescale the controls by factor u1(s) +

u2(s), giving us the following mapping of the time variable and the controls:

ds
dt
7→ ds

dt
· (u1(s) + u2(s)) (5.16)

(u1(s), u2(s)) 7→
(
u :=

u1(s)

u1(s) + u2(s)
, 1− u

)
(5.17)

Under this mapping, the time parameter is rescaled by a factor of at most 2J

(corresponding to a constant slowdown), while the parametric Hamiltonian now looks

like

H(u1, u2) 7→ H(u) = uB + (1− u)C (5.18)

When u1(s) = u2(s) = 0, which is the only case not covered by the above mapping,

we see that the dynamics “switch off” completely. This feature is useful only when the

total time T is greater than the time necessary to complete the algorithm. However, if we

study protocols as a function of the time horizon T , this feature becomes unnecessary,

and we may safely ignore it.

Therefore, we have successfully mapped QAO to a linear, single control framework

157

with only a constant overhead in the run time. From now on, we assume that QAO

possesses the form given in Eq. 5.18.

5.4 Bang-bang algorithms

In parallel with the developments in annealing-based methods, extensive studies

have been conducted into the problem of optimal control of quantum dynamics (see

[180]), particularly in the context of many-body ground state preparation, e.g [181]. It

is often found to be that case that, contrary to a quasistatic schedule, a rapidly switching,

bang-bang schedule could be engineered to prepare states quickly.

In combinatorial optimization, an alternative framework based on circuits with

variable parameters has been investigated, and has recently gained interest with the

introduction of the Quantum Approximate Optimization Algorithm (QAOA), [28].

This is in fact an example of bang-bang control, as observed in [24]. The related

problem of ground state preparation has also been approached using Variational Quantum

Eigensolver (VQE) ansätze [29] that bear close resemblance to QAOA in their setup. The

recent work by Hadfield et al. [165] has proposed a relabeling of the acronym QAOA to

the ‘Quantum Alternating Operator Ansatz’ to capture this generality. In this manner, a

new path that explores classical design strategies of quantum algorithms, also known as a

hybrid approach, has been paved.

In the coming sections, we will formally introduce QAOA, as well as a new,

classical bang-bang version of SA which we call bang-bang SA, or BBSA. Then in

Sec. 5.5, we will elaborate on the theoretical motivation behind choosing the bang-bang

158

approach.

5.4.1 Bang-bang simulated annealing (BBSA)

BBSA is the restriction of linear update simulated annealing (see Sec. 5.3.2) to

bang-bang schedules. In other words, this is an algorithm that alternately applies diffusion

and randomized gradient descent to the state. An instance of this algorithm may then be

specified by the number of rounds p (where in each round we apply the two operators in

succession), and the corresponding evolution times for each round.

Observe that Metropolis-Hastings SA, when restricted to τ = 0,∞, reduces to

bang-bang SA.

5.4.2 QAOA

The Quantum Approximate Optimization Algorithm (QAOA) was introduced by

Farhi et al. in 2014, [28], as an alternative ansatz to the QAO. We note (as is done

in [24]) that, like QAO, QAOA is a restriction of the linearly controlled Hamiltonian

to the case of bang-bang control, i.e., where we only allow u = 0, 1 at any given time.

Therefore, QAOA may also be thought of as a parameterized circuit where the parameters

are evolution times underH0 orH1, or, equivalently, the lengths of the bangs in the control

schedule.

Restricted in this way, a QAOA protocol effectively implements a series of

alternating Hamiltonian evolutions under the mixing operator B, and the cost operator

C. Therefore, for a total of p rounds of alternating evolution with evolution angles

159

β := (β1, . . . , βp) ,γ := (γ1, . . . , γp) for B and C respectively, the final state prepared by

QAOA may be expressed as

|β,γ〉 =

[
p∏
i=1

B(βi)C(γi)
]
|ψ0〉 (5.19)

where we used the parameterized operators from Eq. 5.5, 5.6, and, as in the case of

QAO, the initial state |ψ0〉 is an easily preparable state such as the equal superposition of

bitstrings, |+⊗n〉.

QAOA with a fixed number of rounds p, also written as QAOAp, is a scheme

for preparing one of a family of trial states of the form |β,γ〉. With the angles as

search parameters, a figure of merit such as the energy expectation of the cost operator

E(β,γ) = 〈β,γ|C |β,γ〉 is approximately minimized with the aid of classical outer

loop optimization.

5.5 Conditions for optimality of bang-bang control

Now, we will elaborate on the theoretical motivation for choosing a bang-bang

approach to optimization algorithms, expanding on the observations made in [24, 25].

The Pontryagin Minimum Principle (PMP) from optimal control theory [23] provides

key insight into the nature of optimal schedules for heuristic optimization algorithms

expressible in the control framework. As discussed in Appendix 5.8, PMP gives necessary

conditions on the control in the form of a minimization of the control Hamiltonian, which

is a classical functional of the state amplitudes and corresponding conjugate “momenta”,

and depends on the control parameters as well.

160

When the control HamiltonianH is linear in the control vector u, the minimization

condition Eq. 5.54 implies that the optimal control is extremal, in the sense that the

control only takes values on the boundary of the feasible control set at any given time.

When the control parameters are individually constrained to lie in a certain interval, ui ∈

[ai, bi], then we say that the optimal protocol is bang-bang, i.e. ui(t) = ai or bi. Thus,

the individual controls switch between their extremal values through the course of the

protocol. While the heuristic algorithms QAO, QAOA and SA with linear update satisfy

the condition of linear control, one should exercise caution when stating the optimality of

bang-bang control within these frameworks. We note a few important caveats here:

1. PMP simply gives a necessary condition for optimality, it does not provide

the optimal protocol. A different control theory tool, the Hamilton-Jacobi-

Bellman equation, does provide a way to find the optimal protocol via dynamic

programming.

2. There may be an arbitrary number of switches in the optimal bang-bang protocol.

In fact, some problems exhibit the so-called Fuller phenomenon, in which the

optimal control sequence has an infinite number of bangs, and is therefore rendered

infeasible.

3. The control Hamiltonian may become singular at any point during the protocol. A

singular interval is one in which the first derivative ofH with respect to u vanishes.

In these intervals, the optimal control is not necessarily bang-bang. The presence

of generic singular intervals has already been observed before in the dynamics of

spin systems (see, e.g. [182,183]). Therefore, in order to guarantee that the optimal

161

control is bang-bang at all times, one must first show that there are no singular

intervals during the protocol.

4. The original PMP is stated and proved for dynamics over Euclidean vector spaces

overR. However, in quantum optimization the amplitudes take values inC, and the

Hilbert space is a complex projective vector space with a non-Euclidean geometry.

The generalization must be made with caution.

Despite these caveats, PMP does provide theoretical motivation for using bang-bang

control as a design principle for heuristic optimization algorithms. In the following

sections, we exhibit examples where bang-bang control exponentially outperforms

conventional SA and QAO.

5.6 The problem instances

Now, we describe the problem instances that will be used as benchmarks for our

algorithms. The two following instances have appeared in the context of comparisons

between quantum and classical heuristic optimization algorithms, usually to show the

inability of the classical algorithm to escape a local minimum and find the true, global

minimum [170, 171, 184]. This is often interpreted as evidence of a quantum advantage,

such as the ability to tunnel through barriers. In keeping with this tradition, we will select

these as our benchmarking instances, and look for general features in the performance of

our candidate algorithms.

162

Figure 5.1: Schematic energy landscapes of the two instances, Spike (left) and Bush (right). In
each diagram, the blue curve indicates the distribution of the initial state, the equal superposition
over all bit strings.

5.6.1 Bush of implications

The bush of implications or Bush is an instance first crafted in [170] in order

to demonstrate the failure of SA where QAO succeeds, with an exponential separation

between the two. In Bush, the potential is not fully symmetric under permutation of bits.

Instead, the first bit (the “central” bit, indexed by 0) determines the potential acting on the

Hamming weight of the remaining n “peripheral” bits. Specifically,

c(z = z0z1 . . . zn) = z0 +
n∑
i=1

zi (1− z0) = z0 + w (1− z0) (5.20)

where w = |z1 . . . zn|. So, the potential is constant and equal to 1 when z0 = 1, and a

Hamming ramp, r(w) = w when z0 = 0, as shown in Fig. 5.1. Note that we adopted

a bit-flipped definition of c as compared to the original in [170]. The reason is simply

notational convenience. The energy landscape of the bush of implications can be viewed

as the number of clauses violated in a constraint satisfaction problem, where each clause

163

takes the form ¬z0 =⇒ ¬zj for j > 0, which lends the instance its name.

5.6.2 Hamming ramp with spike

Next, we present a second family of Hamming-symmetric potentials studied first

in [170,185], the Hamming ramp with a spike. In the general form more recently studied

in [171, 184, 186], this potential is given by a ramp r(w) = w, plus a rectangular “spike”

function s(w) centered atw = n/4 with widthO(na) and heightO(nb), for two exponents

a, b ∈ [0, 1].

Ramp: r(w) = w, Spike: s(w) =


nb, if w ∈ [n

4
− na

2
, n

4
+ na

2
]

0, otherwise.

(5.21)

Full Potential: c(w) = r(w) + s(w) (5.22)

We will use this form for the Spike family of instances.

5.7 Performance

Now, we will state the performance of the algorithms from Sec. 5.3, 5.4 on the

instances defined in Sec. 5.6.1, deriving or using existing results as appropriate. We will

find that in both the classical (SA vs. BBSA) and the quantum (QAO vs. QAOA) settings,

there exist parameter regimes in which the bang-bang algorithms are exponentially faster

than their quasistatic analogues.

164

5.7.1 SA and QAO

For both the Bush and Spike examples, Farhi et al. argue in [170] that simulated

annealing gets stuck in local minima, and is exponentially unlikely to reach the global

minimum in polynomial time, in the input size n → ∞. Additionally, they argue for the

success of QAO on these instances in certain parameter regimes.

For the Spike example, [185] and [186] show that when the width and height

parameters satisfy a + b ≤ 1/2, quantum annealing solves Spike efficiently. If, on

the other hand, 2a + b > 1, it was shown by [171] that the minimum spectral gap has

an exponential scaling in n, implying the failure of quantum annealing in this problem

regime. For the Bush example, it was shown in [170] that the gap scaling is polynomial

in n, thus allowing for an efficient adiabatic algorithm to solve this instance. We note that

the performance depends on the choice of the initial mixing Hamiltonian B. In particular,

out of the following family of mixers

Bλ = −λ(n+ 1)X0 −
n∑
i=1

Xi, (5.23)

QAO is successful when λ ≥ 1. On the other hand, when λ = 1/(n+ 1) < 1, we recover

the canonical mixing operator B from Eq. 5.6, and QAO is expected to take exponential

time to solve Bush.

Despite the caveats, Bush and Spike are examples of instances where we have

an exponential separation between a quantum (QAO) and classical (SA) algorithm.

However, in the next section we show that a different, purely classical, bang-bang strategy

165

matches the performance of QAO on the Bush and Spike instances by solving them in

polynomial time.

5.7.2 Bang-bang simulated annealing

Now, we will show that the bang-bang version of simulated annealing is able to

find the ground state of both Bush and Spike in time polynomial in n, and therefore

exponentially outperforms SA (and QAO for certain parameter regimes, see Table 5.1),

on both instances.

5.7.2.1 Bush

We will now show that BBSA efficiently finds the minimum of Bush via BBSA. In

fact, the protocol simply involves performing randomized gradient descent (G) without

any switches to diffusion. First, we characterize the G matrix for this instance. The

natural basis for this problem is a conditional Hamming basis {|z0, w) : z0 ∈ [1], w ∈ [n]}

parameterized by the value of the central bit z0, and the weight of the peripheral string

w = |z1 · · · zn|. The allowed transitions under G are as given below:

|0, w)→ |1, w), for all w > 0. (5.24)

|z0, w)→ |z0, w − 1), for all z0 ∈ [1], w > 0. (5.25)

|1, 0)→ |0, 0). (5.26)

In particular, this implies that a walker at the global minimum |0, 0) cannot leave underG.

Consider a discrete, Markov chain Monte Carlo implementation of G, in which we break

166

up the Markov evolution into N = 1/δt steps of size δt. The stepsize δt is an empirical

parameter which will be set later, while at the moment we only assume that δt� 1. Then,

we may write the Markov evolution as

|PN) =

[
N∏
i=1

e−Gδt

]
|P0) '

[
N∏
i=1

(1−Gδt)
]
|P0) (5.27)

Each step 1 − Gδt above is a stochastic evolution if δt is sufficiently small, i.e., if all

entries of the matrix represent valid probabilities. The requirement that the column sum

be 1 is automatically satisfied since G is column-sum-zero. Then, we start with a walker

sampled from the initial state |P0), and, for every step 1 to N , we update the walker’s

position based on the transition probabilities given by 1−Gδt. This is given in more detail

below. We will show that the above procedure transports a fraction of at least n−2.503 of

walkers to the global minimum, in number of steps N = O
(

1
δt

log n
)
. Finally, arguing

that it suffices to choose δt = Θ(n−1) gives a polynomial runtime of Θ(n3.503 log n) to

have a constant success probability.

In our analysis, we only keep track of the walker in the z0 = 0 subspace,

which contains the global minimum. Any walker that starts in or enters the z0 = 1

subspace during the algorithm will be presumed dead, and we terminate its walk. This

simplification is allowed, since it may only worsen the success probability obtained

through this analysis. Initially, exactly half of the walkers are alive, i.e. in the subspace

z0 = 0, and concentrated in a band of width ∼ √n around w = n/2. For a walker at

Hamming weight w > 0, there are three possible moves (illustrated in Fig. 5.1):

1. (D) Descend to weight w − 1, with probability wδt.

167

2. (S) Stay at the same location with probability 1− (w + 1)δt.

3. (X) “Die”, i.e., escape to the z0 = 1 subspace, with probability δt.

When w = 0, the D and X moves are forbidden, and the walker can only stay in place.

Additionally, we denote the event of survival (i.e. D or S) by X̄ . Now, we track the

random walk under the stated moves. Let m̂ be a random variable representing the total

number of moves the walker takes to reach the global minimum, |0, 0). If the walker dies,

we say that m̂ = ∞. Otherwise, m̂ is finite and equal to the sum of number of moves

spent at each weight w = 1, 2, . . . , n. Defining a corresponding random variable m̂w for

the number of moves spent at each weight, we may write

m̂ =
n∑

w=1

m̂w (5.28)

The expected value of m̂ tells us how many moves any given walker needs to reach the

global minimum under G. However, since we are only interested in living walkers, we

will condition the expectation on the walker staying alive (X̄). Then,

E
(
m̂ | X̄

)
=

n∑
w=1

E
(
m̂w | X̄

)
(5.29)

At each weight w, the condition of survival limits the allowed moves to the regular

expression S∗D. In other words, the walker stays in place for some number of moves

before descending. Note that the probability of not dying in m moves is (1 − δt)m.

Therefore, the probability of spending m total moves, conditioned on survival, is given

168

by

Pr
(
m̂w = m | X̄

)
=

Pr (Sm−1D)

Pr
(
X̄m
) =

(1− (w + 1) δt)m−1wδt

(1− δt)m (5.30)

=

(
1− (w + 1) δt

1− δt

)m−1

· wδt

1− δt (5.31)

. e−wδt(m−1) wδt

1− δt (5.32)

where the last inequality follows from a Taylor series comparison of (1− (w + 1)δt) /1− δt

under the assumption that δt < 1. So, the expectation value of m̂w is

E
(
m̂w | X̄

)
=

∞∑
m=1

m · Pr
(
m | X̄

)
.
wδt · ewδt

1− δt
∞∑
m=1

m · e−mwδt (5.33)

=
wδt

(1− δt) (1− e−wδt)2 (5.34)

Finally, the full expectation value is given by

E
(
m̂ | X̄

)
.

1

1− δt
n∑

w=1

wδt

(1− e−wδt)2 (5.35)

Next, using the variable substitution x = wδt, dx = δt, we may turn the above sum into

an approximate integral. In fact, the integrand x/(1− e−x)2 is monotonically decreasing,

169

so the sum is upper bounded by

E
(
m̂ | X̄

)
.

δt

(1− δt) (1− e−δt)2 +
1

δt(1− δt)

nδt∫
δt

x

(1− e−x)2dx (5.36)

.
4

(1− δt) δt +
1

δt(1− δt)

nδt∫
δt

4

x
dx =

4

(1− δt) δt +
4

δt(1− δt) log(n)

(5.37)

where we used the trick that since x/2 and 1 − e−x are both monotonically increasing,

and x/2 < 1 − e−x for x = 0, 1, then it follows that x/2 < 1 − e−x for all x ∈ [0, 1].

In fact, a tighter bound may be obtained by replacing 2 by e/(e − 1) ≈ 1.58, which

yields a scaling of E
(
m̂ | X̄

)
. 2.503

δt
log n. Finally, the expected survival probability

is Pr
(
X̄
)
& e−δt·

2.503
δt

logn = 1
n2.503 , which is polynomial in n. Therefore, applying this

algorithm for 1
δt

log n with δt = Θ(n−1), yields a polynomial probability of success.

Repeating for at most n2.503 trials amplifies the success probability to a constant. So, the

total time complexity is On3.503 log n, which is efficient in the input size n.

In Fig. 5.2 below, numerics of the continuous-time process (see Eq. 5.27) confirm

that the total time indeed scales as log n.

170

Figure 5.2: Plot of the input size n vs. total time for success (determined by the time taken
for a polynomial fraction of walkers to reach the global minimum). Note that the continuous-
time process does not contain the polynomial factors; those arise from discretization into small
timesteps δt of order . 1/n.

5.7.2.2 Spike

In the previous section, we showed that Bush is a problem instance where classical

bang-bang algorithm (BBSA) can outperform a classical quasistatic algorithm (SA)

exponentially. While this suffices to show the polynomial inequivalence of SA and BBSA,

it is nonetheless interesting to explore further examples where this is the case. The Spike

problem, as presented in 5.21, is the second instance where BBSA can exponentially

outperform SA and QAO. Since the separation is sensitive to details such as the shape of

the spike, we refer the reader to Appendix 5.9 for further discussion.

171

5.7.3 QAOA

Lastly, we will show that one round of QAOA (or QAOA1) efficiently finds the

minimum of the instances Bush and Spike. In fact, as discussed later in this section,

QAOA1 solves a more general class of symmetric instances that includes the Spike

(and with some more analysis, the Bush) example. This is one of the main results of the

chapter, given in Theorem 5.7.1.

5.7.3.1 Spike

One of the key features of this instance is that the spike has exponentially small

overlap with the initial state |+〉⊗n. Intuitively, this implies that the state does not “see”

the spike, and should therefore behave as if evolving under a pure Hamming ramp. We

state this as the following lemma:

Lemma 5.7.1. Let c(w) be a Hamming-symmetric cost function on bitstrings of size n,

and let p(n) ∈ [0, 1] be a problem size-dependent probability. Suppose c(w) = r(w) +

s(w), where r, s are two functions satisfying the following:

1. minw c(w) = minw r(w).

2. There exist angles β, γ such that QAOA1 with schedule (β, γ) minimizes r(w) with

probability at least p(n).

3. If the initial state is |ψ0〉 =
∑

w Aw |w〉, then s(w) overlaps weakly with |ψ0〉 in the

sense that
n∑

w=1

4|Aw|2 sin2

(
γs(w)

2

)
≤ o(p(n))

172

Then, QAOA1 with schedule (β, γ) minimizes c(w) with probability at least p(n) −

o(p(n)).

For the Spike instance, we decompose the cost into a ramp term and a spike,

c(w) = r(w) + s(w). First, we compute the success probability of QAOA1 on only the

ramp term r(w). This potential may be written as

R =
n∑

w=0

w |w〉 〈w| =
n∑
i=1

1− Zi
2

=
n

2
1− 1

2

n∑
i=1

Zi (5.38)

which is a 1-local operator on qubits, just like B. It can be seen that the protocol simply

applies a rotation from the |+〉 state to the |0〉 state on each qubit via a Z/2 rotation

followed by an X rotation, and succeeds with probability 1. The angles can be read off

from the Bloch sphere: γ = 2 · π/4 = π/2, and β = π/4.

Then, it follows from Lemma 5.7.1 that the effect of the spike s(w) under QAOA1

is negligible if
∑

w 4 sin2(γs(w)/2)|Aw|2 is small, where Aw are amplitudes of the initial

state in the symmetric basis. But this sum may be bounded as

n∑
w=0

4 sin2(γs(w)/2)|Aw|2 =
1

2n−2

n/4+na/2∑
w=n/4−na/2

sin2(γnb/2)

(
n

w

)
(5.39)

≤ 1

2n−2

n/4+na/2∑
w=n/4−na/2

(
n

w

)
= 4

n/4+na/2∑
w=n/4−na/2

B(w;n, 1/2)

(5.40)

where B(w;n, 1/2) is a binomial term corresponding to the probability of n tosses of a

fair coin returning exactly w heads. Now, we may use known bounds on tail distributions

173

such as Hoeffding’s inequality, and we finally have

n∑
w=0

4 sin2(γs(w)/2)|Aw|2 = 4

n/4+na/2∑
w=n/4−na/2

B(w;n, 1/2) = o(1) when a < 1 (5.41)

Then, applying Lemma 5.7.1, we conclude that, for a spike with a ∈ [0, 1) and arbitrary b,

QAOA1 with angles (π/4, π/2) finds the global minimum with probability polynomially

close to 1.

This QAOA1 protocol is asymptotically successful for any (a, b) chosen from the

set [0, 1)×R. In practice, finite n instances will show effects of the finite overlap of the

initial state with the spike at a close to 1. But even in this regime, the barrier height is

essentially irrelevant, since it appears in the argument of a sinusoid and may only affect

the bounds in Eq. 5.39 by a constant.

5.7.3.2 Bush

The Bush instance is a quasi-symmetric potential, since it depends on the value of

the central bit. In the z0 = 1 sector, the potential is a constant, while in the z0 = 0 sector,

it is a ramp. So, in analogy with Eq. 5.38

C = |1〉 〈1| ⊗ 1+ |0〉 〈0| ⊗
(
n

2
1− 1

2

n∑
i=1

Zi

)
(5.42)

174

For ease of analysis, separate the mixing operator into the mutually commuting peripheral

terms and central term:

B(β) = e−iβB = (cos β10 − i sin βX0)
n∏
i=1

(cos β1i − i sin βXi) ≡ B0Bi

As before, the QAOA protocol implements one Z rotation (operator C(γ) = e−iγC)

followed by an X rotation (operator B(β)). Since the Bush potential contains a ramp

in the relevant sector, we will try the protocol used for the Spike instance, β = π/4, γ =

π/2.

The Z-rotation transforms the initial state (on the peripheral bits) into the +Y

eigenstate, |+〉⊗n → 1√
2n

(|0〉+ i |1〉)⊗n. So, the full state transforms as

1√
2
|1〉⊗|+〉⊗n+

1√
2
|0〉⊗|+〉⊗n −−−−→

C(π/2)

−i√
2
|1〉⊗|+〉⊗n+ |0〉⊗ 1√

2n+1
(|0〉+ i |1〉)⊗n

Next, Bi transforms the state to

−i√
2
|1〉⊗|+〉⊗n+|0〉⊗ 1√

2n+1
(|0〉+ i |1〉)⊗n −−−−→

Bi(π/4)

−ie−inπ/4√
2

|1〉⊗|+〉⊗n+
1√
2
|0〉⊗|0〉⊗n

and finally, the central mixing term B0 gives (with ω := e−inπ/4)

−iω√
2
|1〉⊗|+〉⊗n+

1√
2
|0〉⊗|0〉⊗n −−−−→

B0(π/4)

−i
2
|1〉⊗

(
ω |+〉⊗n − |0〉⊗n

)
+

1

2
|0〉⊗

(
ω |+〉⊗n + |0〉⊗n

)

175

which is the final state |ψf〉. The success probability is then

Pr(success) = | 〈0〉ψf |2 =
1

4
|1− ω 〈0〉+n|2 = 1/4 +O(1/2n) (5.43)

which is a finite constant and may be boosted polynomially close to 1 with a logarithmic

number of repetitions.

5.7.3.3 Other symmetric instances

The success of QAOA1 on the two chosen instances is in part due to the fact that

only the potential on the support of the initial state affects the state dynamics. This feature

is absent from the other algorithms studied here. Notably, for the adiabatic algorithm

on Spike, while it is true that the spectral gap is minimized at the same point u∗ as

for the ramp without the spike (see [184]), the size of the gap itself depends on the

spike parameters, so that in particular, when the spike is sufficiently broad or tall, the

gap becomes exponentially small in n. In stark contrast, the performance of QAOA1 is

independent of the gap parameters, since the state has vanishing support on the spike.

Now, we will use this feature to give conditions under which a symmetric cost

function may be successfully minimized by QAOA1. When the cost can be decomposed

into a linear ramp and a super-linear part that has small support on the initial state, one

may ignore the super-linear terms and treat the problem as a linear ramp. Suppose we have

a Hamming-symmetric cost function c(w̃) = c0 + c1w̃ + c2w̃
2 + · · · , written as a Taylor

series in w̃, the shifted Hamming weight w̃ = w−n/2 (which we henceforth replace with

w). Separate the function into a linear part and a super-linear part, c(w) = r(w) + q(w),

176

where

r(w) = c0 + c1w (5.44)

s(w) = c2w
2 + · · · (5.45)

Under Lemma 5.7.1, if it is the case that s(w) overlaps weakly with the initial state

(which is roughly supported on weights n/2±O (
√
n)), and if the addition of s(w) does

not change the global minimum of r(w), then such a cost function c(w) can be optimized

using a “ramp protocol” for r(w), as was done for the Spike problem in Sec. 5.7.3.1

(provided the slope of the ramp |c1| ≥ O(1/poly(n))).

However, in this case we can do better (Theorem 5.7.1 below): even if the global

minimum of c(w) does not coincide with that of r(w), the ramp protocol may be suitably

modified to ensure the successful minimization of c(w). Suppose minw c(w) = w∗. For

the ramp r(w) = c0 + c1w, the first step of QAOA is evolution under C(π/(2|c1|)). For

c(w), we modify γ to γ∗ (to be determined), and keep β = π/4 unchanged. Then, the

final state may be written as

|ψf〉 =
n⊗
i=1

(sin (γ∗/2) |0〉+ cos (γ∗/2) |1〉) (5.46)

=
n∑

w=0

(sin (γ∗/2))n−w (cos (γ∗/2))w
(
n

w

)1/2

|w〉 (5.47)

Then, by inspection, γ∗ must maximize the success probability, or equivalently, the

177

function (sin (γ∗/2))2(n−w∗) (cos (γ∗/2))2w∗ . An elementary calculation yields that

γ∗ = arccos

√
w∗

n
(5.48)

Finally, the success probability is

Pr(success) =
(w∗)w

∗
(n− w∗)w∗

nn

(
n

w∗

)
= O(1) (5.49)

by Stirling’s approximation. So, QAOA1 with β = π/4, γ = γ∗ successfully optimizes

the cost function c(w). Finally, we note that if the minimum w∗ of c is unknown, the

above QAOA1 protocol may be carried out for all n + 1 possible values of w∗ until

success, which is at most a factor O(n) overhead. Therefore, we have just proven the

following result:

Theorem 5.7.1. When c(w) = r(w)+s(w) and r is linear in w with slope Ω(1/poly(n)),

and s(w) satisfies the weak overlap condition 3 in Lemma 5.7.1, c(w) can be successfully

minimized via QAOA1 with at most a polynomial number of classical repetitions.

There is an intuitive picture for the feature of QAOA discovered in Theorem 5.7.1

above. As has been observed before [171, 187], the low energy spectrum of the mixing

operator B can be mapped to a suitable harmonic oscillator that treats the Hamming

weight w as the position variable. Under this mapping, the initial state |+〉⊗n acts as the

vacuum state wavepacket, and a linear ramp with slope a, C = a
∑

w w |w〉 〈w| is the

analogous position operator. We may then qualitatively work out the action of QAOA

on the initial wavepacket. The first round, evolution under C, displaces the vacuum to

178

a state with finite momentum p = aγ. Then, evolution under the harmonic oscillator

HamiltonianB for time β = π/2 rotates the coherent state so that the final state is one that

is displaced in w. So, in a single round of QAOA, the wavepacket gains momentum and

propagates to a new location in hamming weight space. (This feature has been recently

noted in [169].) While the above method recovers the QAOA1 protocol qualitatively, it

gets the angle γ wrong by a factor 2/π. This is due to the curvature of the phase space.

In fact, the wavepacket is more accurately described by a spin-coherent state, in which

the conjugate operators are the total spin operators Sx and Sz. It remains to be seen

how this (spin-)coherent state picture may be employed to understand the behavior of

QAOA on other (especially non-Hamming symmetric) instances. The simplicity of this

description suggests a classical algorithm which simulates the momentum transfer and

jump operations of the wavepacket via local gradient measurements of the cost function.

This could give rise to a new, quantum-inspired classical search heuristic that escapes

local minima more efficiently than existing classical methods.

5.8 The control framework

Given a dynamical equation depending on additional parameters (which we call the

controls), what properties does a control protocol which optimizes a given cost function

satisfy? The relevance of this question extends across many fields where optimal control

(with respect to a cost function) is desired. In fact, it has been observed [24, 25] that

the optimal control problem also applies to heuristic optimization algorithms, where the

controlled dynamics are described precisely by Schrödinger evolution under the annealing

179

Hamiltonian, and the cost function is given by the energy of the final state.

Consider a first-order differential equation describing the dynamics of an n-

dimensional real vector x ∈ Rn, and controlled bym control parameters which we denote

by the vector u ∈ Rm:

ẋ(t) = f(x(t), u(t)) (5.50)

The functional form f may be very general; we only assume that f is “Markovian”

(i.e., depends only on the current state (x(t), u(t))), and that there is no explicit time-

dependence. Typically, it is further assumed that the control u inhabits a fixed, compact

subset, u ∈ U ⊂ Rm. The domain U represents a feasible set of controls.

In order to talk about optimal control, we must first specify a notion of cost. In a

real problem such as optimizing the trajectory of a spacecraft, the cost might be expressed

in terms of time, amount of fuel used (i.e. a trajectory-dependent cost), and the distance of

the final position from the target location (i.e., a final state cost). Thus, the cost function

may generally be expressed as a (weighted) sum of three costs:

1. the total time for the process, T =
T∫
0

1dt

2. the running cost, which is given as an integral over the running time,
T∫
0

L (x(t), u(t), t))dt

3. the terminal cost, which is a final state-dependent function K(x(T)).

The full cost function may be expressed in the general form

J = K(xfinal) +

∞∫
0

L (x(t), u(t), t) dt (5.51)

180

where J is a functional of the control schedule u(t) and the dynamical path x(t). The

objective is to find the control function u(t), over all piecewise continuous functions

u : R≥0 → U , that minimize the overall cost, i.e. arg minu(t) J(u). This is the so-called

infinite time horizon formulation of the problem. Alternatively, one can fix the total

time for the protocol T to be finite. Then, we are asked to minimize over all piecewise

continuous functions u : [0, T]→ U the cost

J = K(x(T)) +

T∫
0

L (x(t), u(t), t) dt (5.52)

A wealth of literature in classical control theory discusses the question of optimal

control, and we emphasize its potential applicability in the setting of designing efficient

heuristic optimizers, both classical and quantum. Here, we will focus on one result, the

Pontryagin Minimum Principle (PMP), which imposes necessary conditions for a control

protocol to be optimal using the so-called control Hamiltonian description.

The control HamiltonianH is a classical functional describing auxiliary Hamiltonian

dynamics on a set of variables given by x and corresponding co-state (or conjugate

momentum) variables p. The conjugate momenta depend on the cost function J in

Eq. 5.51, and are introduced as Lagrange multipliers that impose the equations of motion

for each coordinate of x. The full cost function (at time t), which includes the cost terms

in J and the constraints, is given by the control HamiltonianH.

H := L(x, u)− p · f(x, u) (5.53)

181

Then, PMP states that the optimal control is one which minimizes the control Hamiltonian

at all times. That is,

H (x(t), p(t), u∗) ≤ min
u∈U
H (x(t), p(t), u) (5.54)

In the special case whenH is linear in the control u, the above minimality condition

is satisfied only if the control lies on the boundary of the feasible set U . This implies that

optimal trajectories are bang-bang, i.e., the controls only take their extremal values. The

optimal point(s) on the boundary are determined by the intersection of the constant-H

hyperplanes in control space with the set boundary. However, an important exception

arises when the derivative of H with respect to u vanishes over a finite interval. In

this case, the control becomes singular, i.e., its optimal value no long lies solely on the

boundary of U .

The control framework described here covers many heuristic optimization algorithms,

and we will fix some notation to suit this setting. The dynamical vector of interest will a

state |ψ〉 (quantum) or |ψ) (classical), and the generator of dynamics will be a controlled

linear operator

H(u) =
m∑
i=0

uiHi ≡ u ·H (5.55)

where u and H are vectors with components ui and Hi respectively. We assume

that individual Hamiltonians Hi are time-independent, and only their overall strength,

controlled by the coefficient ui(t), is time-dependent. We will fix the range of all ui to

[0, 1].

182

5.9 Bang-bang simulated annealing on the Spike

For Spike, the strategy used for Bush, namely, run randomized gradient descent

(zero-temperature SA) from start to finish, fails due to the presence of a barrier. So, if we

run gradient descent for time O(n) per walker, then we are left with a distribution sharply

peaked at the false minimum. We may now attempt to diffuse across the barrier. For a

sufficiently wide barrier, this strategy will again fail, since the diffusion rate across the

spike is exponentially small in na. However, we instead turn on diffusion for a short time,

so that a constant fraction of the walkers “hop on” the barrier, while the rest diffuse away

from the barrier. Then, we turn on randomized gradient descent again until the finish. The

fraction of walkers on the barrier are now guaranteed to walk to the global minimum in

time O(n), as the slope is positive.

So, it can be seen that for the spike problem, an algorithm with the same structure

as SA but a schedule that is designed without the adiabaticity constraint, successfully

finds the global minimum, and thus exponentially outperforms SA (and QAO for certain

parameter regimes, see Table 5.1) on the same instance. It should be noted that the success

of BBSA depends sensitively on the shape of the spike. In particular, we expect success

(i.e. at least 1/poly(n) walkers reach the global minimum) when the part of the spike

with positive slope (i.e. the “uphill” portion) has width O(log n).

183

5.10 Proof of Lemma 5.7.1

Let C = e−iγ
∑
w c(w)|w〉〈w| and let R,S be defined analogously with the cost terms

r(w) and s(w), where c(w) = r(w) + s(w). R and S are mutually commuting, so

C = RS, and the first step of the QAOA1 protocol may be written as

C |ψ0〉 = RS |ψ0〉 = R
n∑

w=0

e−iγs(w)Aw |w〉 = R|ψ0〉+R
n∑

w=0

(
e−iγs(w) − 1

)
Aw |w〉

(5.56)

After the mixing operator B = e−iβB is applied, the final state is

|ψf〉 = BR |ψ0〉+ BR
n∑

w=0

(
e−iγs(w) − 1

)
Aw |w〉 (5.57)

The overlap with the global minimum |ψ∗〉 is

〈ψ∗〉ψf = 〈ψ∗| BR |ψ0〉+ 〈ψ∗| BR
n∑

w=0

(
e−iγs(w) − 1

)
Aw |w〉

(5.58)

=⇒ | 〈ψ∗〉ψf − 〈ψ∗| BR |ψ0〉 | = | 〈ψ∗| BR
n∑

w=0

2eiγs(w)/2−iπ/2 sin

(
γs(w)

2

)
Aw |w〉

(5.59)

Now, p = | 〈ψ∗| BR |ψ0〉 |2, and let p∗ = | 〈ψ∗〉ψf |2, the success probabilities of QAOA1

on r(w) and the full cost function c(w), respectively. We wish to show that p∗ is at least

p − o(p). Using the triangle inequality |x| − |y| ≤ |x − y| on the left side of Eq. 5.59,

and Cauchy-Schwarz inequality | 〈u〉 v| ≤ | 〈u〉u|1/2| 〈v〉 v|1/2 on the right side, we get

184

the following:

√
p−√p∗ ≤

n∑
w=1

4|Aw|2 sin2

(
γs(w)

2

)1/2

=
√
q (5.60)

=⇒ p∗ ≥ p
(

1−
√
q/p
)2

= p (1− o(1))2 = p− o(p) (5.61)

which proves the lemma.

185

Chapter 6: Quantum approximate optimization of the long-range Ising

model with a trapped-ion quantum simulator

A promising near-term application of quantum devices is the production of highly

entangled states with metrological advantage or with properties of interest for many-

body physics and quantum information processing. One possible approach to produce

useful quantum states is to use quantum devices to perform adiabatic quantum computing

[26, 27], which in some cases may provide an advantage over classical approaches

[188]. However, adiabatic quantum computing has stringent adiabaticity requirements

that hinder its applicability on existing quantum platforms that have finite coherence

times [189].

Alternatively, hybrid quantum-classical variational algorithms may approximately

solve hard problems in realms such as quantum magnetism, quantum chemistry [24],

and high-energy physics [190]. This is because the key resource of quantum computers

and simulators is quantum entanglement, which is exactly what makes these many-body

quantum problems hard. In a hybrid variational algorithm, entangled states are functions

of variational parameters that are iteratively optimized by a classical algorithm. One

example is the Quantum Approximate Optimization Algorithm [28], which consists of a

“bang-bang” protocol that can provide approximate answers in a time-efficient way, using

186

devices with finite coherence times and without the use of error-correction [33,191–194].

Similarly to adiabatic quantum computing, the QAOA protocol encodes the

objective function of the optimization problem in a target spin Hamiltonian. The

optimization steps of the QAOA are based on unitary evolution under the target

Hamiltonian and a non commuting “mixing” operator. In general, the QAOA relies on a

classical outer loop to optimize the quantum circuit, aided by physical intuition [30, 169,

195, 196] or observed structure of the variational parameters [194, 197, 198], producing

fast, low-depth circuits for approximate solutions. The QAOA has also been proposed as

an efficient way to produce entangled quantum states, such as the ground states of critical

Hamiltonians, which gives access to their corresponding energies [199, 200].

In the work covered in this chapter, we employ a collection of interacting trapped-

ion qubits to experimentally implement a specific instance of the QAOA, which is native

to our quantum hardware. We focus on both the energy minimization of the quantum

Hamiltonian and the combinatorial optimization of the corresponding classical problem.

Both problems are encoded in the transverse field anti-ferromagnetic Ising Hamiltonian

with long-range interactions:

H =
∑
i<j

Jijσ
x
i σ

x
j︸ ︷︷ ︸

HA

+B
∑
i

σyi︸ ︷︷ ︸
HB

. (6.1)

Here we set the reduced Planck’s constant ~ = 1, σγi (γ = x, y, z) is the Pauli matrix

acting on the ith spin along the γ direction of the Bloch sphere, Jij > 0 is the Ising

coupling between spins i and j, which, in our case, falls off as a power law in the

187

distance between the spins, and B denotes the transverse magnetic field. It is well-

known [201] that the Hamiltonian (6.1) exhibits a quantum phase transition for anti-

ferromagnetic interactions with power law decay. One of the goals of this work is to

find an approximation of the ground state energy both at the critical point (B/J0)c, where

J0 is the average nearest-neighbour coupling, and in the case of B = 0, optimizing the

QAOA output for the classical Hamiltonian HA. The realization of the QAOA entails a

series of unitary quantum evolutions (see Fig. 1) under the non-commuting Hamiltonians

HA and HB (defined under Eq. (6.1)) that are applied to a known initial state |ψ0〉. The

state obtained after p layers of the QAOA is:

|β,γ〉 =

p∏
k=1

e−iβk(HB/J0)e−iγk(HA/J0) |ψ0〉 , (6.2)

where the evolution times (or, henceforth, “angles”) βk and γk are variational parameters

used in the k-th QAOA layer to minimize the final energy E(β,γ) = 〈β,γ|H|β,γ〉.

In order to implement the quantum optimization algorithm, each spin in the chain

is encoded in the 2S1/2 |F = 0,mF = 0〉 ≡ |↓〉z and |F = 1,mF = 0〉 ≡ |↑〉z hyperfine

“clock” states of a 171Yb+ ion (see Appendix A). In this work, depending on the number

of qubits and measurements required, we employ two different quantum simulation

apparatus to run the QAOA, which will herein be referred to as system 1 [202] and system

2 [32] (see Appendix A). Both systems are based on a linear RF Paul trap where we store

chains of up to N = 40 ions and initialize the qubits in the ground state of HB, namely

the product state |↑↑ · · · ↑〉y ≡ |+〉
⊗N = |ψ0〉, where |↑〉y ≡ (|↑〉z + i |↓〉z)/

√
2 and

B is assumed to be negative. The unitary evolution under HA is realized by generating

188

. . .
<latexit sha1_base64="nw2jCyFxh5nBCV1vcPYSue5lT54=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsog4SRSYkXnyyaccj5bd2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tLsTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lN7ncfQRsRq3ucJRBEbKLEWHCGVvIHoxjNsN5wm24Buky8kjRIifaw/mVzPI1AIZfMmL7nJhhkTKPgEua1QWogYXzKJtC3VLEITJAVx87pSWoYxjQBTYWkhQi/ExmLjJlFoZ2MGD6YRS8X//P6KY6vgkyoJEVQPF+EQkKxyHAtbAtAR0IDIssvByoU5UwzRNCCMs6tmNpaarYPb/H7ZdI5a3rnTffuotG6LpupkiNyTE6JRy5Ji9ySNvEJJ4I8kWfy4sycV+fNef8ZrThl5pD8gfPxDaRYk0k=</latexit>..

.
<latexit sha1_base64="nw2jCyFxh5nBCV1vcPYSue5lT54=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsog4SRSYkXnyyaccj5bd2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tLsTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lN7ncfQRsRq3ucJRBEbKLEWHCGVvIHoxjNsN5wm24Buky8kjRIifaw/mVzPI1AIZfMmL7nJhhkTKPgEua1QWogYXzKJtC3VLEITJAVx87pSWoYxjQBTYWkhQi/ExmLjJlFoZ2MGD6YRS8X//P6KY6vgkyoJEVQPF+EQkKxyHAtbAtAR0IDIssvByoU5UwzRNCCMs6tmNpaarYPb/H7ZdI5a3rnTffuotG6LpupkiNyTE6JRy5Ji9ySNvEJJ4I8kWfy4sycV+fNef8ZrThl5pD8gfPxDaRYk0k=</latexit>

��y
i �

<latexit sha1_base64="ePFFamtr+YDvgZsUhDUxfGPcB/s=">AAACDHicbVC7TsNAEDyHVwivAA0SzYkIiSqyAQnKCBrKIJGHFIdofdmEU85n626NFEXhE/gKWqjoEC3/QMG/4JgUkDDVaGZXuzNBrKQl1/10cguLS8sr+dXC2vrG5lZxe6duo8QIrIlIRaYZgEUlNdZIksJmbBDCQGEjGFxO/MY9GisjfUPDGNsh9LXsSQGUSp3inq9A9xX6VvZDuB12pG8yoVMsuWU3A58n3pSU2BTVTvHL70YiCVGTUGBty3Njao/AkBQKxwU/sRiDGEAfWynVEKJtj7IEY36YWKCIx2i4VDwT8ffGCEJrh2GQToZAd3bWm4j/ea2EeuftkdRxQqjF5BBJhdkhK4xMq0HelQaJYPI5cqm5AANEaCQHIVIxSbsqpH14s+nnSf247J2U3evTUuVi2kye7bMDdsQ8dsYq7IpVWY0J9sCe2DN7cR6dV+fNef8ZzTnTnV32B87HNyMim9I=</latexit>

��x
i �

x
j �

<latexit sha1_base64="y9C49Q2rwbmUI0Uzlf19K2wRWaQ=">AAACF3icbVC7TsNAEDzzDOEVoKQ5ESFRRTYgQRlBQxkk8pDiEK0vm3DkfLbu1ogoygfwCXwFLVR0iJaSgn/BMRECwlSjmVnt7gSxkpZc992ZmZ2bX1jMLeWXV1bX1gsbmzUbJUZgVUQqMo0ALCqpsUqSFDZigxAGCutB/3Ts12/QWBnpCxrE2Aqhp2VXCqBUaheKvgLdU+hb2Qvh8rYt+Te99k3mpSm35Gbg08SbkCKboNIufPidSCQhahIKrG16bkytIRiSQuEo7ycWYxB96GEzpRpCtK1h9syI7yYWKOIxGi4Vz0T8OTGE0NpBGKTJEOjK/vXG4n9eM6HucWsodZwQajFeRFJhtsgKI9OWkHekQSIYX45cai7AABEayUGIVEzS2vJpH97f76dJbb/kHZTc88Ni+WTSTI5tsx22xzx2xMrsjFVYlQl2xx7YI3ty7p1n58V5/YrOOJOZLfYLztsnuJWgaw==</latexit>

x
<latexit sha1_base64="HJlQ6iSC3zQwvjBv0UovLIOLjNM=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGspEIg8psaLzZRNOOZ+tuz1EZOULaKGiQ7R8EAX/gm1cQMJUo5ld7ewEsRQGXffTKa2srq1vlDcrW9s7u3vV/YOOiazm0OaRjHQvYAakUNBGgRJ6sQYWBhK6wfQm87sPoI2I1B3OYvBDNlFiLDjDVGo9Dqs1t+7moMvEK0iNFGgOq1+DUcRtCAq5ZMb0PTdGP2EaBZcwrwysgZjxKZtAP6WKhWD8JA86pyfWMIxoDJoKSXMRfm8kLDRmFgbpZMjw3ix6mfif17c4vvIToWKLoHh2CIWE/JDhWqQNAB0JDYgsSw5UKMqZZoigBWWcp6JNK6mkfXiL3y+TzlndO6+7rYta47popkyOyDE5JR65JA1yS5qkTTgB8kSeyYtjnVfnzXn/GS05xc4h+QPn4xuHM5GD</latexit>

y
<latexit sha1_base64="L2c1C2lSKAZOZJulD/K2fkBHmLA=">AAAB83icbVC7TsNAEDzzDOEVoKQ5ESFRRTYgQRlBQ5lI5CElVrS+bMIp54fu9pCiKF9ACxUdouWDKPgXbOMCEqYazexqZydIlDTkup/Oyura+sZmaau8vbO7t185OGyb2GqBLRGrWHcDMKhkhC2SpLCbaIQwUNgJJreZ33lEbWQc3dM0QT+EcSRHUgClUnM6qFTdmpuDLxOvIFVWoDGofPWHsbAhRiQUGNPz3IT8GWiSQuG83LcGExATGGMvpRGEaPxZHnTOT60BinmCmkvFcxF/b8wgNGYaBulkCPRgFr1M/M/rWRpd+zMZJZYwEtkhkgrzQ0ZomTaAfCg1EkGWHLmMuAANRKglByFS0aaVlNM+vMXvl0n7vOZd1NzmZbV+UzRTYsfshJ0xj12xOrtjDdZigiF7Ys/sxbHOq/PmvP+MrjjFzhH7A+fjG4jCkYQ=</latexit>

z
<latexit sha1_base64="lwoAuRP8DoiYX8VLpK0rQFDS5ek=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGspEIg8psaLzZRNOOZ+tuz2kYOULaKGiQ7R8EAX/gm1cQMJUo5ld7ewEsRQGXffTKa2srq1vlDcrW9s7u3vV/YOOiazm0OaRjHQvYAakUNBGgRJ6sQYWBhK6wfQm87sPoI2I1B3OYvBDNlFiLDjDVGo9Dqs1t+7moMvEK0iNFGgOq1+DUcRtCAq5ZMb0PTdGP2EaBZcwrwysgZjxKZtAP6WKhWD8JA86pyfWMIxoDJoKSXMRfm8kLDRmFgbpZMjw3ix6mfif17c4vvIToWKLoHh2CIWE/JDhWqQNAB0JDYgsSw5UKMqZZoigBWWcp6JNK6mkfXiL3y+TzlndO6+7rYta47popkyOyDE5JR65JA1yS5qkTTgB8kSeyYtjnVfnzXn/GS05xc4h+QPn4xuKUZGF</latexit>

e�i�1HA
<latexit sha1_base64="zDtdoLWBsS5xoqXa0DSXUKXh0QU=">AAACBnicbVC7TsNAEDyHd3gFKGlOREg0RHZAgpJHQwkSSZASY62PTTjlzrbu1ghkpecraKGiQ7T8BgX/gmNSQMJUo5ld7eyEiZKWXPfTKU1Nz8zOzS+UF5eWV1Yra+tNG6dGYEPEKjZXIVhUMsIGSVJ4lRgEHSpshf3Tod+6Q2NlHF3SQ4K+hl4ku1IA5VJQWcfrbFd2eqA1BB4/C44HQaXq1twCfJJ4I1JlI5wHla/OTSxSjREJBda2PTchPwNDUigclDupxQREH3rYzmkEGq2fFdkHfDu1QDFP0HCpeCHi740MtLUPOswnNdCtHfeG4n9eO6XuoZ/JKEkJIzE8RFJhccgKI/NSkN9Ig0QwTI5cRlyAASI0koMQuZjmLZXzPrzx7ydJs17z9mr1i/3q0cmomXm2ybbYDvPYATtiZ+ycNZhg9+yJPbMX59F5dd6c95/RkjPa2WB/4Hx8A72XmDA=</latexit>

e�i�2HA
<latexit sha1_base64="9UkEwoH5LKdpsAXnOYY2sHBqR1g=">AAACBnicbVC7TsNAEDyHd3gFKGlOREg0RHZAgjJAQxkkEpASY60vm3DKnW3drRHISs9X0EJFh2j5DQr+Bcek4DXVaGZXOzthoqQl1313SlPTM7Nz8wvlxaXlldXK2nrbxqkR2BKxis1lCBaVjLBFkhReJgZBhwovwuHJ2L+4QWNlHJ3TXYK+hkEk+1IA5VJQWcerbFd2B6A1BHV+GhyNgkrVrbkF+F/iTUiVTdAMKh/dXixSjREJBdZ2PDchPwNDUigclbupxQTEEAbYyWkEGq2fFdlHfDu1QDFP0HCpeCHi940MtLV3OswnNdC1/e2Nxf+8Tkr9Qz+TUZISRmJ8iKTC4pAVRualIO9Jg0QwTo5cRlyAASI0koMQuZjmLZXzPrzf3/8l7XrN26vVz/arjeNJM/Nsk22xHeaxA9Zgp6zJWkywW/bAHtmTc+88Oy/O69doyZnsbLAfcN4+Ab8rmDE=</latexit>

p = 1
<latexit sha1_base64="RxN4PQNl96aI9OHNpWvTdAhLJqk=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIDEjRIETSUQZCHlFjR+bIJp5zPp7s1KLLyCbRQ0SFavoeCf8ExLiBhqtHMrnZ2Ai2FRdf9dApLyyura8X10sbm1vZOeXevZaPYcGjySEamEzALUihookAJHW2AhYGEdjC+mvntBzBWROoOJxr8kI2UGArOMJVu9YXXL1fcqpuBLhIvJxWSo9Evf/UGEY9DUMgls7bruRr9hBkUXMK01IstaMbHbATdlCoWgvWTLOqUHsWWYUQ1GCokzUT4vZGw0NpJGKSTIcN7O+/NxP+8bozDcz8RSscIis8OoZCQHbLciLQDoANhAJHNkgMVinJmGCIYQRnnqRinpZTSPrz57xdJq1b1Tqq1m9NK/TJvpkgOyCE5Jh45I3VyTRqkSTgZkSfyTF6cR+fVeXPef0YLTr6zT/7A+fgGcd2R/w==</latexit>

p = 2
<latexit sha1_base64="9L/8maHdrzbUVMCKtpp1wqxU+Nk=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIDEjRIETSUQZCHlFjR+bIJp5zPp7s1KLLyCbRQ0SFavoeCf8ExLiBhqtHMrnZ2Ai2FRdf9dApLyyura8X10sbm1vZOeXevZaPYcGjySEamEzALUihookAJHW2AhYGEdjC+mvntBzBWROoOJxr8kI2UGArOMJVu9UWtX664VTcDXSReTiokR6Nf/uoNIh6HoJBLZm3XczX6CTMouIRpqRdb0IyP2Qi6KVUsBOsnWdQpPYotw4hqMFRImonweyNhobWTMEgnQ4b3dt6bif953RiH534ilI4RFJ8dQiEhO2S5EWkHQAfCACKbJQcqFOXMMEQwgjLOUzFOSymlfXjz3y+SVq3qnVRrN6eV+mXeTJEckENyTDxyRurkmjRIk3AyIk/kmbw4j86r8+a8/4wWnHxnn/yB8/ENc2ySAA==</latexit>

e�i�1HB
<latexit sha1_base64="Klsb9FMigfypp4r9GIgXJwNT82g=">AAACBXicbVC7TgJBFJ3FF+ILtLSZSExsJLtooiXBhhITeSSAm7vDBSfMPjJzV0M21H6FrVZ2xtbvsPBfXJBCwVOdnHNv7rnHi5Q0ZNufVmZldW19I7uZ29re2d3LF/abJoy1wIYIVajbHhhUMsAGSVLYjjSC7ylseaOrqd+6R21kGNzQOMKeD8NADqQASiU3X8Db5FR2PSRwHV5zqxM3X7RL9gx8mThzUmRz1N38V7cfitjHgIQCYzqOHVEvAU1SKJzkurHBCMQIhthJaQA+ml4yiz7hx7EBCnmEmkvFZyL+3kjAN2bse+mkD3RnFr2p+J/XiWlw2UtkEMWEgZgeIqlwdsgILdNOkPelRiKYJkcuAy5AAxFqyUGIVIzTknJpH87i98ukWS45Z6Xy9XmxUp03k2WH7IidMIddsAqrsTprMMEe2BN7Zi/Wo/VqvVnvP6MZa75zwP7A+vgG8r6XwA==</latexit>

e�i�2HB
<latexit sha1_base64="ZwC9Kd8WvhTbNXnKUrM+9wwZqLU=">AAACBXicbVC7TgJBFJ3FF+ILtLSZSExsJLtooiXBhhITeSSAm7vDBSfMPjJzV0M21H6FrVZ2xtbvsPBfXJBCwVOdnHNv7rnHi5Q0ZNufVmZldW19I7uZ29re2d3LF/abJoy1wIYIVajbHhhUMsAGSVLYjjSC7ylseaOrqd+6R21kGNzQOMKeD8NADqQASiU3X8Db5FR2PSRwy7zmViduvmiX7Bn4MnHmpMjmqLv5r24/FLGPAQkFxnQcO6JeApqkUDjJdWODEYgRDLGT0gB8NL1kFn3Cj2MDFPIINZeKz0T8vZGAb8zY99JJH+jOLHpT8T+vE9PgspfIIIoJAzE9RFLh7JARWqadIO9LjUQwTY5cBlyABiLUkoMQqRinJeXSPpzF75dJs1xyzkrl6/NipTpvJssO2RE7YQ67YBVWY3XWYII9sCf2zF6sR+vVerPef0Yz1nzngP2B9fEN9FKXwQ==</latexit>

Figure 6.1: QAOA protocol. The system is initialized along the y direction in the Bloch sphere
in the |+〉⊗N state. The unitary evolution under HA(B) is implemented for angles γi(βi) for p
times. At the end of the algorithm global measurements in the x and the y basis are performed to
compute the average energy 〈H〉 = E(β,γ), which is compared to the theoretical ground state
energy Egs.

spin-spin interactions through spin-dependent optical dipole forces implemented by an

applied laser field. This gives rise to effective long-range Ising couplings that fall off

approximately as Jij ≈ J0/|i − j|α [203]. The power-law exponent α ∼ 1 and the

interaction strengths vary in the range J0/2π =(0.3-0.57) kHz, depending on the system

size and the experimental realization (see Appendix A for details). The unitary evolution

underHB is generated by applying a global rotation around the y-axis of the Bloch sphere.

After each run of the algorithm, we perform a projective measurement of each

spin in the x (y) basis to measure 〈HA〉 (〈HB〉) (see Fig. 6.1). Measurements in the

x and y bases are carried out by performing a π/2 rotation about the y(x)-axis of

the Bloch sphere, illuminating the ions with resonant laser light, and collecting the

σzi -dependent fluorescence on a camera with site-resolved imaging. The energy is

calculated by combining the measurements of the two-body correlators 〈σxi σxj 〉 and the

189

total magnetization along the y axis
∑

i〈σyi 〉, where the indices i, j range from 1 to N .

We benchmark the experimental outcome E(β,γ) with the ground state Egs of the target

Hamiltonian (see Eq. 6.1) calculated numerically with exact diagonalization or Density

Matrix Renormalization Group (DMRG) [204]. In order to quantify the performance of

the QAOA, we use the dimensionless quantity

η ≡ E(β,γ)− Emax
Egs − Emax

, (6.3)

where Emax is the energy of the highest excited state. This choice maps the entire many-

body spectrum to the [0, 1] interval. In the following we show that the best experimental

performance η∗ is close to the theoretical performance ηth, which itself is less than unity

for a finite number p of QAOA layers.

6.1 Quantum Hamiltonian optimization

We first focus on the p = 1 optimization of the full quantum problem, where two

variational parameters (γ and β) are used to minimize the energy of the Hamiltonian

(1). In this case, the time-evolved one- and two-point correlation functions can be

efficiently computed [205,206]. This leads to a general formula for the energy expectation

under a state produced by the p = 1 QAOA that is used to compute the theoretical

performance of the algorithm (see Appendix A). In Fig. 6.2a we show an experimental

exhaustive search over the parameter space {γ, β} and compare it to the theoretical

performance of the algorithm, showing good agreement for N = 20 qubits. We also

compare the performance of our algorithm as a function ofB/J0 with the expected QAOA

190

performance ηth (see Fig. 6.2b).

As shown in Ref. [201], for transverse fields greater than the critical value, the

ground state is a low entanglement paramagnet, whereas below the critical point the

ground state is an entangled superposition of anti-ferromagnetic states. We locate this

critical point at |B/J0| = 0.31 for 20 qubits by computing the half-chain entanglement

entropy SL/2 = −Tr(ρL/2 log ρL/2) of the ground state numerically, where ρL/2 is the

half-chain reduced density matrix. As shown in Fig. 6.2b, while the experimental

performance is η > 94% when |B/J0| is above the critical point, the gain relative to the

initial state |ψ0〉 is modest. On the other hand, below the critical point, the target state is

more entangled, which allows for a larger experimental performance gain, at the expense

of a reduced absolute performance. In order to quantitatively assess the gain over the finite

initial state performance, we introduce a performance natural scale based on the quantity

ση(J0, B,N), namely the standard deviation around the mean performance achieved

implementing a QAOA protocol with random angles (see Appendix A for details). For

N = 20 and B/J0 ∼ −0.3, ση ∼ 2× 10−3, our experimental performance at the critical

point η∗ is more than 20ση away from the initial state. On the other hand, the discrepancy

between the ideal and experimental performance can be explained by taking into account

our noise sources in the numerics (see Fig. 2c and the Combinatorial Optimization section

below).

We investigate the performance of the p = 1 QAOA algorithm as a function of

the number of qubits. For each system size, we ensure that the spin-spin couplings Jij

have the same dependence on the qubit distance |i − j| by varying the trap parameters

(see Appendix A). As shown in the inset of Fig. 6.2d, the half-chain entanglement entropy

191

as a function of system size N exhibits a peak located at B/J0 ∼ −0.33, displaying the

onset of the phase transition as N tends to infinity. For all system sizes, we optimize the

algorithm by performing a scan of the interaction angle γ and applying discrete variations

of the mixing angle β around the optimal value predicted by the theory. In Fig. 6.2d,

we compare the optimal experimental and theoretical performances η for different system

sizes from 20 up to 40 qubits for fixed B/J0 ∼ −0.3. We observed experimentally

that the QAOA yields a similar performance as a function of number of qubits even if

the algorithm runtime stays approximately constant as the number of qubits increases.

Numerically, we found that the performance η scales polynomially with N and with the

number of layers p [207] (see Appendix A). Assuming extrapolation to higher numbers

of qubits holds, this scaling, combined with a polynomial-time search heuristic, suggests

that for any desired energy threshold ε, our approach allows us to approximate the energy

to a degree η > 1− ε in time and number of layers that scale as poly(N, 1/ε).

We experimentally perform a search for the optimal p = 2 QAOA performance

using 20 qubits. Unlike the p = 1 case, there is no known analytic formula to efficiently

compute the energy. However, exploiting relationships between optimal angles as a

function of increasing p, we use a bootstrapping heuristic (see Appendix A for details)

that allows the experiment to identify a set of optimal angles faster than a global parameter

search. The bootstrapping heuristic computes a guess for optimal angles at p given

optimal angles at lower p. A local optimizer, such as the greedy gradient descent described

below, is then needed to take this guess to the true optimum. Our new heuristic method

allows us to find variational parameters in time that scales polynomially with the number

of layers and sublinearly in the number of qubits (when used in conjunction with the

192

quantum device).

We start from the optimal guess and perform a fine scan of γ2, while varying γ1, β1

and β2 in larger steps. The result is shown in Fig. 6.2d, where we plot the performances η

as a function of γ2 for every set of parameters used in the experiment. Fig. 6.2d shows also

a color plot of all the optimal energies found as a function of the other three parameters

γ1, β1 and β2. The p = 2 QAOA performance with 20 qubits η∗ = (93.9 ± 0.3)% is

in agreement with the p = 1 performance in system 2, taken with the same parameters

(see Fig. 6.2c). This indicates that decoherence and bit-flip errors (see Appendix A)

accumulated during longer evolution times are already balancing out the 2% expected

performance gain of one additional optimization layer.

As a brute force approach is inefficient, we implement a closed-loop QAOA by

interfacing the analog trapped-ion quantum simulator with a greedy gradient-descent

algorithm to optimize the measured energy. In the p = 1 QAOA, we can visualize

the optimization trajectory on the theoretical performance surface as shown in Fig.

6.3. Starting from a guess (β(0), γ(0)), we measure the approximate local gradient by

performing the energy measurements in two orthogonal directions β(0) +δβ and γ(0) +δγ

to compute the new guess (β(1), γ(1)), where we measure the new energy on the quantum

simulator. As shown in Fig. 6.3, the algorithm converges after about 10 iterations.

Compared to an exhaustive search, the gradient descent uses fewer queries to the quantum

simulator and is therefore more robust to slow drifts in the experimental system. For this

reason, we are able to achieve a better performance compared to the exhaustive search

method.

193

6.2 Combinatorial optimization

We further explore the performance of the trapped-ion system by investigating the

combinatorial optimization of the classical Hamiltonian HA (see Eq. (1) with B = 0)

approximately sampling the output of the p = 1 QAOA, using high-fidelity, single-shot

measurement of all the qubits. It has been proven, under reasonable complexity-theoretic

assumptions, that no classical algorithm can efficiently sample exactly from a sufficiently

general class of p = 1 QAOA circuits [191]. Recent results [208, 209] suggest that this

could also hold in the case of approximate sampling (see Appendix A). In this case, by

measuring in the x basis, it is possible to sample the probability distribution of all the 2N

eigenstates |xi〉 of the Hamiltonian HA. We performed the experiment with 12 qubits so

that we can both compute the expected QAOA theoretical output and also experimentally

over-sample the Hilbert space of all the possible 212 = 4096 possible outcomes. In Fig.

6.4a we show on a log scale the QAOA eigenstates probability distribution using the

optimal variational parameters β∗, γ∗ and compare the experimental eigenstate histogram

with the exact diagonalization prediction of the QAOA output state, sorting the eigenstates

according to their energies.

However, sampling from the full QAOA output distribution is a daunting task,

since the experimental outcome is extremely sensitive to fluctuations in the Hamiltonian

parameters and to experimental errors caused by detection and phonon-assisted bit-

flip events and unwanted effective magnetic fields along the z direction of the Bloch

sphere caused by uncompensated light shift (see also Appendix A). Given our measured

experimental parameters, we can calculate the effect of these errors on the quantum

194

evolution, resulting in a good agreement with the experimental outcome, as shown in

Fig. 4a.

Another useful way to compare numerics and experimental data is to implement

the coarse-graining procedure of the Hilbert space proposed in Ref. [210]. After sorting

in decreasing order the observed states according to their experimental probability, we

iteratively group the states into “bubbles” of Hamming distance L around the most

probable state, producing a coarse-grained dataset. We then apply the same coarse-

graining to the theoretical probability distribution and plot the comparison in Fig. 6.4b. In

this procedure the Hamming distance radius is varied to ensure that each bubble contains

a comparable number of experimental shots, leading to bubbles of average Hamming

distance L̄ = 2.5. In order to quantitatively compare the coarse-grained experiment and

the theory, we use two different metrics, namely the total variation distance (TVD) and

the Kullback-Leibler divergence (DK−L), defined as:

TVD =
1

2

∑
i

|pi − qi|, (6.4)

DK−L = −
∑
i

pi log

(
qi
pi

)
, (6.5)

where pi(qi) is the experimental (theoretical) probability of observing the i-th outcome.

As shown in Fig. 6.4c, when the system is in the initial state, it is closer to a uniform

probability distribution since |ψ0〉 is an equal superposition of all the eigenstates of HA.

Indeed, at γ = 0, the TVD between the data {pi} and the uniform distribution is smaller

than the one comparing the data and the ideal QAOA distribution {qi}β∗,γ∗ . On the other

hand, as the γ parameter is scanned, we observe a net decrease of both TVD and DK−L

195

between the experiment {pi} and the QAOA ideal distribution {qi}β∗,γ∗ , in agreement

with the decrease in energy, computed by measuring one and two-body correlators.

The variational quantum algorithm reported here, with up to 40 trapped-ion qubits,

is the largest ever realized on a quantum device. We approximate the ground state energy

of a non-trivial quantum Hamiltonian showing almost constant time scaling with the

system size. Single-shot high-efficiency qubit measurements in different bases give access

to the full distribution of bit-strings that is difficult or potentially impossible to model

classically. With the addition of individual control over the interactions between qubits as

well as improvements to fidelity and system size, the variational quantum-classical hybrid

approach can be employed in this experimental platform to give insight into quantum

chemistry [211–213] and hard optimization problems [214], such as Max-SAT or exact

cover [215], or be used for the production of highly entangled states of metrological

interest [216].

196

20
25

30
35

40
0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

N

η

E
xp

er
im

en
t

N
u
m
er
ic
s

In
it
ia
l
st
at
e

d

b

e

�<latexit sha1_base64="QLWlrQtn8B6Beakz5lBRxjnjbaE=">AAAB9nicbVC7TsNAEDzzDOEVoKQ5ESFRRXZAgjKChjJI5CElVrS+bJJTzg/drRGRlV+ghYoO0fI7FPwLtnEBCVONZna1s+NFShqy7U9rZXVtfWOztFXe3tnd268cHLZNGGuBLRGqUHc9MKhkgC2SpLAbaQTfU9jxpjeZ33lAbWQY3NMsQteHcSBHUgBlUh8JBpWqXbNz8GXiFKTKCjQHla/+MBSxjwEJBcb0HDsiNwFNUiicl/uxwQjEFMbYS2kAPho3ybPO+WlsgEIeoeZS8VzE3xsJ+MbMfC+d9IEmZtHLxP+8XkyjKzeRQRQTBiI7RFJhfsgILdMSkA+lRiLIkiOXAReggQi15CBEKsZpK+W0D2fx+2XSrtec81r97qLauC6aKbFjdsLOmMMuWYPdsiZrMcEm7Ik9sxfr0Xq13qz3n9EVq9g5Yn9gfXwDttySwQ==</latexit>

N <latexit sha1_base64="cf0izRJGCasc2WwBdQ5XIv4Jcpw=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrIDEpQRNFQokQiJlFjR+bIJp5zP1t0eUmTlC2ihokO0fBAF/4JtXEDCVKOZXe3sBLEUBl330ymtrK6tb5Q3K1vbO7t71f2DexNZzaHDIxnpXsAMSKGggwIl9GINLAwkdIPpdeZ3H0EbEak7nMXgh2yixFhwhqnUvh1Wa27dzUGXiVeQGinQGla/BqOI2xAUcsmM6XtujH7CNAouYV4ZWAMx41M2gX5KFQvB+EkedE5PrGEY0Rg0FZLmIvzeSFhozCwM0smQ4YNZ9DLxP69vcXzpJ0LFFkHx7BAKCfkhw7VIGwA6EhoQWZYcqFCUM80QQQvKOE9Fm1ZSSfvwFr9fJveNundWb7TPa82ropkyOSLH5JR45II0yQ1pkQ7hBMgTeSYvjnVenTfn/We05BQ7h+QPnI9vRmGRWw==</latexit>

a

-
1.
0

-
0.
8

-
0.
6

-
0.
4

-
0.
2

0.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B/
J 0

SL/2

N
=
20

N
=
25

N
=
30

N
=
35

N
=
40

20
25

30
35

40
0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

N

η

E
xp

er
im

en
t

N
u
m
er
ic
s

In
it
ia
l
st
at
e

c

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

γ 2
·� 0
(ra
d)

η

In
iti
al
st
at
e

Be
st
pe
rf
or
m
an
ce

N
um
er
ic
s
p=
2

Fi
gu

re
6.

2:
E

xh
au

st
iv

e
se

ar
ch

fo
r

op
tim

al
pe

rf
or

m
an

ce
.(

a)
E

xp
er

im
en

ta
l(

le
ft

)a
nd

th
eo

re
tic

al
(c

en
te

r)
pe

rf
or

m
an

ce
la

nd
sc

ap
e

an
d

th
ei

ra
bs

ol
ut

e
di

ff
er

en
ce

(r
ig

ht
)a

s
a

fu
nc

tio
n

of
th

e
va

ri
at

io
na

lp
ar

am
et

er
s
β

an
d
γ

fo
rN

=
20

qu
bi

ts
(J

0
/
2π

=
0
.5

7
kH

z,
B
/J

0
∼
−

0.
3)

,d
is

pl
ay

in
g

an
av

er
ag

e
ab

so
lu

te
di

ff
er

en
ce

of
1.

9%
ov

er
21

0
di

ff
er

en
t{
β
,γ
}

pa
ir

s.
T

he
op

tim
al

pe
rf

or
m

an
ce

is
η
∗

=
(9

3.
8
±

0.
4)

%
,w

he
re

as
th

e
th

eo
re

tic
al

pe
rf

or
m

an
ce

is
η t
h

=
9
6.

1%
.

E
ac

h
da

ta
po

in
t

is
th

e
re

su
lt

of
11

00
(8

00
)

ex
pe

ri
m

en
ta

l
re

pe
tit

io
ns

to
m

ea
su

re
in

th
e
x

(y
)

ba
si

s
(d

at
a

ta
ke

n
on

sy
st

em
1)

.
(b

)
E

xh
au

st
iv

e
se

ar
ch

op
tim

iz
at

io
n

as
a

fu
nc

tio
n

of
B
/J

0
(s

ee
E

q.
(1

))
(d

at
a

ta
ke

n
on

sy
st

em
1)

.
T

he
da

rk
re

d
so

lid
lin

e
is

th
e

ha
lf

-c
ha

in
en

ta
ng

le
m

en
t

en
tr

op
y
S
L
/
2

co
m

pu
te

d
nu

m
er

ic
al

ly
w

ith
D

M
R

G
.T

he
da

sh
ed

bl
ue

lin
e

re
pr

es
en

ts
th

e
pe

rf
or

m
an

ce
of

th
e

in
iti

al
pr

od
uc

ts
ta

te
|ψ

0
〉.

(c
)C

om
pa

ri
so

n
be

tw
ee

n
ex

pe
ri

m
en

ta
lp

er
fo

rm
an

ce
s

an
d

nu
m

er
ic

s
fo

r
B
/J

0
=
−

0
.2

5
an

d
N

=
12

as
a

fu
nc

tio
n

of
γ

an
d
β
∗

=
1.

12
.

Ta
ki

ng
in

to
ac

co
un

tb
it-

fli
p

er
ro

rs
an

d
sl

ow
dr

if
ts

in
th

e
ex

pe
ri

m
en

ta
lp

ar
am

et
er

s
ex

pl
ai

ns
w

el
lt

he
di

sc
re

pa
nc

y
be

tw
ee

n
ex

pe
ri

m
en

ta
la

nd
id

ea
lp

er
fo

rm
an

ce
(s

ee
A

pp
en

di
x

A
fo

r
de

ta
ils

).
(d

)T
he
p

=
1

Q
A

O
A

pe
rf

or
m

an
ce

as
a

fu
nc

tio
n

of
sy

st
em

si
ze
N

up
to

40
qu

bi
ts

(d
at

a
ta

ke
n

on
sy

st
em

2)
.

C
om

pa
ri

so
n

be
tw

ee
n

Q
A

O
A

ex
pe

ri
m

en
ta

la
nd

th
eo

re
tic

al
pe

rf
or

m
an

ce
fo

rB
/J

0
∼
−

0.
3.

G
re

en
po

in
ts

sh
ow

th
e

ba
se

lin
e

pe
rf

or
m

an
ce

of
th

e
in

iti
al

st
at

e
|ψ

0
〉.

In
se

t:
C

on
ve

rg
en

ce
of

th
e

en
ta

ng
le

m
en

te
nt

ro
py

pe
ak

as
a

fu
nc

tio
n

of
nu

m
be

r
of

qu
bi

ts
(s

ee
A

pp
en

di
x

A
).

(e
)p

=
2

ex
ha

us
tiv

e
se

ar
ch

fo
r
N

=
20

an
d
B
/J

0
∼
−

0
.3

.
L

ef
t:

ev
er

y
co

lo
r

co
rr

es
po

nd
s

to
a

fin
e

sc
an

of
γ

2
w

ith
a

di
ff

er
en

ts
et

of
va

ri
at

io
na

lp
ar

am
et

er
s
β

1
,β

2
an

d
γ

1
(d

at
a

ta
ke

n
on

sy
st

em
2)

.
R

ig
ht

:
3D

co
lo

rp
lo

to
ft

he
pe

rf
or

m
an

ce
η

,o
pt

im
iz

ed
ov

er
γ

2
,a

s
a

fu
nc

tio
n

of
th

e
pa

ra
m

et
er

s
β

1
,β

2
an

d
γ

1
.T

he
be

st
ou

tc
om

e
is
η
∗

=
(9

3.
9
±

0
.3

)%
(c

ol
or

ed
re

d)
,w

he
re

as
th

e
th

eo
re

tic
al

pe
rf

or
m

an
ce

is
η t
h

=
98
.4

%
(s

ee
m

ai
n

te
xt

fo
r

de
ta

ils
).

In
(b

),(
c)

,(d
)a

nd
(e

)t
he

er
ro

r
ba

rs
ar

e
ca

lc
ul

at
ed

by
us

in
g

th
e

st
an

da
rd

de
vi

at
io

n
fr

om
th

e
m

ea
n

of
th

e
m

ea
su

re
d

pe
rf

or
m

an
ce

.

197

a
b

Fi
gu

re
6.

3:
G

ra
di

en
td

es
ce

nt
se

ar
ch

fo
r

p=
1

Q
A

O
A

.(
a)
N

=
12

an
d

(b
)N

=
20

.
L

ef
t:

pe
rf

or
m

an
ce
η

co
nv

er
ge

nc
e

as
a

fu
nc

tio
n

of
ite

ra
tio

ns
of

th
e

cl
as

si
ca

l-
qu

an
tu

m
hy

br
id

al
go

ri
th

m
w

ith
(a

)N
=

12
(J

0
/
2π

=
0.

57
kH

z,
B
/J

0
=
−

0
.3

)w
ith

a
m

ea
su

re
d
η
∗

=
(9

4.
9
±

0
.2

)%
an

d
(b

)N
=

20
qu

bi
ts

(J
0
/
2π

=
0.

55
kH

z,
B
/
J

0
=
−

0
.3

)
w

ith
a

m
ea

su
re

d
η
∗

=
(9

4.
7
±

0
.1

)%
.

R
ig

ht
:

th
e

al
go

ri
th

m
tr

aj
ec

to
ry

on
th

e
th

eo
re

tic
al

pe
rf

or
m

an
ce

la
nd

sc
ap

e
pl

ot
te

d
as

a
fu

nc
tio

n
of
γ

an
d
β

.E
ac

h
en

er
gy

ev
al

ua
tio

n
ta

ke
s

40
00

(6
00

0)
sh

ot
s

fo
r1

2
(2

0)
qu

bi
ts

.T
he

er
ro

rb
ar

s
ar

e
st

an
da

rd
de

vi
at

io
n

fr
om

th
e

m
ea

n
of

th
e

m
ea

su
re

d
pe

rf
or

m
an

ce
(d

at
a

ta
ke

n
on

sy
st

em
1)

.

198

Figure 6.4: Sampling from p = 1 QAOA. (a) Eigenstate probability histogram for 12 qubits
with B = 0. The numerical histogram is computed by decomposing the ideal QAOA output
state on the {|xi〉} basis. We performed 10800 measurements to oversample the Hilbert space of
dimension 2N = 4096 at the optimal parameters β∗ = 0.25 and γ∗ = 0.31. The 4096 eigenstates
are grouped in bins of 20 for clarity purposes. The uncertainty bands follow the multinomial
distribution standard deviation. Here J0/2π = 0.33 kHz (see noise sources section in Appendix A
for details). (b) Histogram of coarse-grained distributions (see main text for details) comparing
data, theory and the uniform distribution. The error bars here also represent the standard deviation
of the multinomial distribution. (c) Total Variation Distance and Kullback-Leibler divergence as
a function of γ, keeping β fixed at the optimal value (1350 shots per time step). The non-zero
TVD value of the violet curve at γ = 0 is due to state preparation and detection errors, as well
as undersampling (see Appendix A). The distance from the uniform distribution increases as the
γ parameter reaches the optimal point γ∗. Dashed lines are the comparison between the ideal
QAOA distribution {qi}β∗,γ∗ and the uniform distribution. The uncertainty bands are based on
the aforementioned error in the probability of each state bubble for the experimental distribution,
propagated to the TVD and the DK−L according to Eq. (6.4) (data taken on system 2).

199

Chapter 7: Approximate optimization of the MaxCut problem with a

local spin algorithm

Binary unconstrained optimization, i.e., the maximization of an objective function

on the configuration space of binary variables, is an important NP-hard optimization

problem whose restrictions include several problems from Karp’s list of 21 NP-complete

problems [217]. Due to the hardness of the problems, many solution approaches rely on

finding approximately optima in the shortest possible time, or constructing algorithms

that have an optimality guarantee but without guarantees on runtime. Algorithms in the

latter category are often referred to as exact solvers, and include approaches that use

linear, quadratic, or semi-definite programming (LP/QP/SDP) relaxations of the problem

instance with techniques to obtain optimality bounds such as cutting planes, branch-and-

bound, or Langrangian dual-based techniques. While the design of exact algorithms may

be well-suited to theoretical analysis, the runtime scaling in instance size is often poor.

In some cases, it is possible to design polynomial-time algorithms with guarantees

on the approximation ratio, i.e., the ratio of the optimum obtained to the global maximum.

These are, however, ultimately limited by hardness results on achieving approximation

ratios above a certain threshold value [218].

In the absence of runtime or optimality guarantees, problem-specific heuristics can

200

nevertheless perform better than expected, exhibiting superior performance in runtime,

optimality or both. An important class of heuristics takes inspiration from physical

processes seen in nature, and those in this category that mimic the evolution of quantum

systems are known as quantum-inspired optimization methods.

Quantum-inspired (or “dequantized”) algorithms have arisen in recent years of

out a rich interplay between physics and algorithms research in the context of quantum

computing. Thus, as notions of complexity now find analogues in many-body systems,

so do quantum dynamics inform the design of quantum and classical algorithms. In

the area of classical optimization, two quantum algorithms have generated considerable

interest: quantum annealing and the quantum approximate optimization algorithm

(QAOA). Promising developments in quantum annealing have inspired classical heuristic

algorithms such as simulated quantum annealing [186] and sub-stochastic Monte

Carlo [219], both of which mimic the evolution of the quantum state under an

adiabatically evolving Hamiltonian.

Recent results on the performance of shallow-depth QAOA on the problem of

MAX-E3-LIN2 led to improved approximations of corresponding classical algorithms for

the same problem [28, 220]. More recently, a new classical heuristic known as Local

Tensor (LT) was introduced in [33], taking inspiration from QAOA and closely related

to previously known classical heuristics for distributed computing [221]. It was shown

in [33] that LT has average-case performance better than single-layer QAOA for triangle-

free MAXCUT and MAX-K-LIN2 by tuning only one global hyperparameter, in contrast to

the two-parameter tuning required for QAOA. Currently, it is unknown whether LT may

be useful as a heuristic more broadly, and if so, how the hyperparameters should be set in

201

practice. In this chapter, we address this question by implementing a version of LT and

benchmarking it on the problem of MAXCUT. We find that on the instances studied, the

performance of LT can be considerably enhanced by hyperparameter tuning, and that it is

possible to provide good initial guesses on the hyperparameters as function of the instance

description. Under such settings, the performance of LT is comparable to the performance

of the commercially available solver, Gurobi.

Our setup is described in Secs. 7.1 and 7.2, followed by a discussion of

hyperparameter tuning and the underlying physics of the algorithm in Secs. 7.4 to 7.6,

respectively. Then, we provide a brief description of the problem instances studied

(Sec. 7.3), and compare the performance of tuned LT with those of Gurobi (Sec. 7.7)

and gradient descent (Sec. 7.8).

7.1 Spin problems

We refer to binary unconstrained optimization problems on spin degrees of freedom

si ∈ {−1, 1} as spin problems. Most generally, one can express the objective function as

a polynomial in the variables. Furthermore, since higher powers of the binary variables

are trivial, the polynomial is guaranteed to be degree at most one in each variable. The

objective function to be maximized can therefore be viewed (up to a negative sign) as

a Hamiltonian of a spin system, and the optimization problem maps to sampling from

the ground state of the Hamiltonian. The cost Hamiltonian for a system of n spins with

202

indices {1, 2, . . . , n} can be written as

H =
∑
α

wα
∏
i∈α

si. (7.1)

Therefore, H is a sum of monomials, or clauses, where a clause α is supported on the

subset of spins α ⊆ {1, . . . , n}. The sum is weighted by clause weights wα. The

problem can be fully specified as a weighted hypergraph G = (V,E,W), on vertices

V = {1, 2, . . . , n}, hyperedges E = {α, · · · }, and clause weights W = {wα, . . .}.

A wide range of optimization problems be cast as binary unconstrained maximization

problems [222], making this problem description very versatile. A simple (and commonly

studied) case is one where the polynomial (7.1) is quadratic, i.e. |α| ≤ 2 for every α. This

case captures several interesting physical systems such as Ising spin glasses, as well as

a wide range of graph optimization problems. In this work, we focus on a particular

quadratic spin problem, MAXCUT, defined in the following manner. Given a weighted

graph G = (V,E,W), we define a cut to be a partition of the vertices of the graph into

two sets. The weight of the cut (or simply the cut) is then defined as the sum of weights

of edges going across the cut. Therefore, for any A ⊂ V , the cut is

F (A) :=
∑

i∈A,j∈Ā

wij. (7.2)

Then, given a graph G, MAXCUT asks for the largest cut of the graph. To show that

MAXCUT can be written as a quadratic spin problem, we consider the following encoding:

Assign a spin si to vertex i. Then, there is a one-to-one mapping between bipartitions of

203

V , (A, Ā), and spin configuration, s = (s1, s2, . . . , sn), namely, by setting si = +1 if

i ∈ A and −1 otherwise. Edges ij that lie wholly in either A or Ā do not count towards

the cut, while edges betweenA and Ā do. In terms of the spins, edge ij will count towards

the cut iff the spins si, sj have opposite sign. Therefore, we may express the MAXCUT

Hamiltonian in the following manner:

HMAXCUT =
1

4

∑
i,j

wij · (sisj − 1). (7.3)

≡ 1

2
sT · J · s (7.4)

where Jij := wij/2 with zero diagonal terms, Jii = 0, and the last equivalence is

an equality up to a constant offset −1
4

∑
i,j

wij . The cut size for any configuration is

the negation of the energy under HMAXCUT. Notice that the ground state of HMAXCUT

corresponds to the largest cut inG. Since we are ultimately interested in the maximization

problem, we will denote the negation of the energy by E.

Despite its simple statement (and apparent similarity to the polynomial-time

solvable problem of MINCUT), MAXCUT is known to be NP-hard [217]. In fact, assuming

the unique games conjecture holds, approximating MAXCUT to within a fraction 0.878.. is

NP-hard [223]. This is also the best known performance guarantee, achieved by the exact

classical algorithm due to Goemans and Williamson (GW) on MAXCUT with non-negative

weights. Custom solvers for MAXCUT that that improve on practical performance while

sometimes preserving optimality are known [224–226].

MAXCUT is a well-studied problem and often used as a benchmark for new classical,

204

quantum, and quantum-inspired solvers. Benchmarking of certain quantum-inspired

optimization methods such as the coherent Ising machine [227] and the unified framework

for optimization or UFO (see, e.g., [228]) has yielded promising results. In the following

section, we discuss the LT heuristic framework and set up our implementation of the

algorithm.

7.2 Local Tensor framework

Before describing our implementation, we review the local tensor (LT) algorithm

framework laid out in [33]. The LT framework provides a general prescription for a

class of local algorithms for the optimization of a Hamiltonian on spin variables. In

a local algorithm, the state (e.g., a spin configuration) is encoded into the nodes of a

graph, and the update rule at every node is local in the graph structure, depending only

on nodes that are at most a bounded distance away. Local state updates therefore require

information transfer among small neighborhoods and not the entire graph. If the graph has

bounded degree, this can provide polynomial savings in the running cost of the algorithm.

Additional speedup can be obtained in a true distributed model of computing where each

node is an individual processor, and communication among nodes is slow compared to

the internal operations of each processor.

LT is a local algorithm framework for optimization problems on spin degrees of

freedom (such as MAXCUT). In LT, we first relax the domain of every spin variable

from the binary set {−1, 1} to a continuous superset such as the real interval [−1, 1]. By

convention, we denote soft spins (i.e. those in the continuous domain) by letters u, v, etc.

205

and hard spins by letters r, s, etc. Then, LT simulates dynamics of a soft spin vector v

in discrete time steps, and, at the end of a total number of steps p, retrieves a hard spin

configuration s from the final state via a rounding procedure applied to the soft spins.

There is considerable flexibility in this setup, and for ease of study, we construct a specific

instance of LT here.

Suppose we are given a MAXCUT instance whose corresponding Hamiltonian (as

in (7.4)) is H . Denote the state of spin i at time t by vi,t, and the full state vector by

vt = (v1,t, v2,t, . . . , vN,t). Then, we perform the following steps in order, simultaneously

for all spins i = 1, . . . , N .

1. Initialize all spins uniformly at random, vi,0 ∈ [−1, 1].

2. For t = 0, 1, . . . , p− 1, update vi,t 7→ vi,t+1 as follows:

(a) vi,t.5 = vi,t + cFi,t where Fi,t := −∂H/∂vi,t and c is a real constant.

(b) vi,t+1 = tanh(βvi,t.5), where β is a positive constant.

3. After p rounds, round each spin to its sign, vi,p 7→ s∗i = sgn (vi,p) ∈ {−1, 1}.

Return s∗i .

The final configuration s∗ is a feasible solution candidate. As there the initial

configuration v0 is sampled at random, an outer loop carries out several independent

runs of the algorithm and selects the best solution.

For an instance of size n, the domain of feasible solutions corresponds to the

vertices of an n-dimensional hypercube. The relaxation in LT extends the domain to

the full hypercube, which allows for small, incremental updates and a well-behaved cost

206

function, at the cost of making the search space infinite. However, the rounding step at the

end of the algorithm offsets this drawback in the form of a lenient rounding rule: Return

the nearest vertex of the hypercube. Therefore, the final state of the graph is only required

to lie in the correct quadrant (or 2n-ant, to be precise) in order to produce the optimal

solution.

The spin update sequence is carried out for a total of p rounds, each consisting of

two steps. The force Fi = ∂H/∂vi, calculated for each spin, displaces the spin by an

amount proportional to it. We refer to the constant of proportionality c as the response.

Next, we apply the nonlinear function tanh(βv) to the spin, with a rescaling factor β.

This choice of notation is motivated by analogy to the inverse temperature β in classical

thermodynamics. As discussed in the next section, the soft spin v can be inferred as the

expectation of an ensemble of spin configurations. When β is small, the expected value

v is close to zero (i.e., random), while for large β the spins are “frozen” (expected value

close to ±1). The number of rounds p, response c, and β form the hyperparameters of

the algorithm, which must be fixed (ideally by optimization) before the algorithm is run

on an instance. In theory, the factors c, β can also be made to vary by round under a

predetermined or adaptive schedule, in a manner similar to simulated annealing. Here,

however, we will consider them to be constant in time.

7.3 Spin model instances

In order to test the dynamics and the performance of LT, we choose one of

several online repositories of MAXCUT instances, the “Biq Mac” library [229]. Each

207

instance therein is a random graph with edge weights drawn from a particular probability

distribution. In addition to the weight distribution, the instances is parameterized by the

number of variables n and edge density d (i.e. the expected number of non-zero weight

edges). The instance data is tabulated in Table 7.1.

208

In
st

an
ce

ty
pe

Ta
g

W
ei

gh
td

is
tr

ib
ut

io
n

In
st

an
ce

si
ze

(n
)

C
la

us
e

de
ns

ity
(d

)

g
0
5
n

g
0
5

w
ij
∈
{0
,1
}

60
,8

0,
10

0
0.

5
p
m
1
s
n

p
m
1
s

w
ij
∈
{−

1,
0,

1}
80
,1

00
0.

1
p
m
1
d
n

p
m
1
d

w
ij
∈
{−

1,
0,

1}
80
,1

00
0.

5
w
d
n

w
w
ij
∈

[−
10
,1

0]
10

0
0.

1,
0.

5,
0.

9
p
w
d
n

p
w

w
ij
∈

[0
,1

0]
10

0
0.

1,
0.

5,
0.

9
i
s
i
n
g
2
.
5
-
n

i
s
i
n
g
2
.
5

w
ij
∝

ε i
j

|j
−
i|2
.5

,ε
ij
∼
N

(0
,1

)
10

0,
15

0,
20

0,
25

0,
30

0
–

i
s
i
n
g
3
.
0
-
n

i
s
i
n
g
2
.
5

w
ij
∝

ε i
j

|j
−
i|3
.5

,ε
ij
∼
N

(0
,1

)
10

0,
15

0,
20

0,
25

0,
30

0
–

t
2
g
L

t
o
r
u
s

2-
di

m
.t

or
oi

da
lg

ri
d,
w
〈i
j〉
∈
{−

1,
1}

L
2
,L

=
5,

6,
7

4
n
−

1

t
3
g
L

3-
di

m
.t

or
oi

da
lg

ri
d,
w
〈i
j〉
∈
{−

1,
1}

L
3
,L

=
5,

6,
7

6
n
−

1

Ta
bl

e
7.

1:
T

he
be

nc
hm

ar
ki

ng
in

st
an

ce
s.

E
ac

h
in

st
an

ce
is

a
ra

nd
om

gr
ap

h
on
n

ve
rt

ic
es

w
ho

se
ed

ge
w

ei
gh

ts
ar

e
ch

os
en

fr
om

th
e

gi
ve

n
di

st
ri

bu
tio

n.
T

he
fir

st
co

lu
m

n
sp

ec
ifi

es
th

e
fo

rm
at

tin
g

of
in

st
an

ce
na

m
es

,w
hi

le
th

e
se

co
nd

co
lu

m
n

pr
ov

id
es

a
sh

or
te

rt
ag

fo
ra

ll
in

st
an

ce
so

fa
gi

ve
n

ty
pe

.I
n

th
e

ca
se

of
th

e
w

in
st

an
ce

s,
w

e
so

m
et

im
es

gr
ou

p
th

e
in

st
an

ce
ty

pe
w

by
cl

au
se

de
ns

ity
d

,i
n

w
hi

ch
ca

se
th

e
in

st
an

ce
s

ar
e

ta
gg

ed
as
w
d

,w
he

re
d

=
0.

1
,0
.5
,0
.9

.
T

he
in

st
an

ce
ty

pe
s
g
0
5

,p
m
1
s

,p
m
1
d

,w
,a

nd
p
w

ar
e

ra
nd

om
gr

ap
hs

on
n

ve
rt

ic
es

w
ith

cl
au

se
de

ns
ity

d
,w

he
re

ed
ge

w
ei

gh
ts

ar
e

dr
aw

n
fr

om
th

e
di

st
ru

bt
io

n
in

co
lu

m
n

3.
T

he
i
s
i
n
g

in
st

an
ce

s
ar

e
a

1-
di

m
en

si
on

al
Is

in
g

m
od

el
w

ith
lo

ng
-r

an
ge

d
in

te
ra

ct
io

ns
fa

lli
ng

of
f

as
a

po
w

er
(2

.5
or

3.
0)

of
th

e
in

te
r-

sp
in

di
st

an
ce

,w
ith

a
nu

m
er

at
or

sa
m

pl
ed

fr
om

th
e

no
rm

al
di

st
ri

bu
tio

n.
T

he
t
o
r
u
s

in
st

an
ce

s
ar

e
pe

ri
od

ic
,D

-d
im

en
si

on
al

(D
=

2,
3)

sp
in

la
tti

ce
s

w
ith

ra
nd

om
co

up
lin

gs
±

1
al

on
g

th
e

ed
ge

s
of

th
e

la
tti

ce
(d

en
ot

ed
by
〈ij
〉f

or
tw

o
ne

ig
hb

or
in

g
ve

rt
ic

es
i,
j)

.

209

7.4 LT as a discretized, imaginary-time Schrödinger evolution

LT describes a particular discrete-time evolution of a spin system under a

Hamiltonian H . In this section, we provide a physical underpinning to these dynamics

by showing that evolution under LT is closely related to imaginary-time Schrödinger

evolution under H .

Given any initial state |ψ〉 and Hamiltonian H , time-evolution of |ψ〉 under H is

given by the Schrödinger equation d |ψ〉 /dt = −iH |ψ〉. The evolution applies a phase

to the eigenstates of H proportional to the energy of the state times time, so that low-

energy states rotate slowly while highly excited states rotate fast. An analytical tool often

employed to access the low-energy spectrum of H is that of analytic continuation to

imaginary time. In this, one replaces the time by an imaginary time parameter τ := it,

and the (unnormalized) imaginary time Schrödinger equation reads

˙|ψ〉 ≡ d |ψ〉 /dτ = −H |ψ〉 . (7.5)

The formal solution to this equation is |ψ(τ)〉 = e−Hτ |ψ(0)〉. Note that |ψ(τ)〉

is unnormalized, but we keep track of the normalization N (|ψ(τ)〉) ≡ N (τ) :=√
〈ψ(τ)〉ψ(τ). In the limit τ → ∞, and assuming that the ground state of H is non-

degenerate, the exponential e−τH suppresses contributions from all but the lowest-energy

state |ψ0〉 of H , which implies that limτ→∞ |ψ(τ)〉 = |ψ0〉.

210

The normalization N (τ) has τ -dependence

Ṅ =
1

2
√
〈ψ〉ψ

·
(
〈ψ̇〉ψ + 〈ψ〉 ψ̇

)
(7.6)

= −〈H〉N (7.7)

where 〈H〉 := 〈ψ|H |ψ〉 is the unnormalized expectation value of operator H . The

normalized expectation value is given by 〈〈H〉〉 := 〈H〉/N 2.

Next, let H be a Hamiltonian acting on n qubits that is diagonal in the Z basis. Any

state |ψ〉 in this Hilbert space can be mapped to a vector of normalized expectation values

of the Pauli operators Zi, where the index i runs over all spins:

|ψ(τ)〉 7→ (〈〈Z1〉〉, 〈〈Z2〉〉, . . . , 〈〈Zn〉〉)

=: (v1, v2, . . . , vn) ,

where vi ∈ [−1, 1] is the classical spin variable that tracks the normalized expectation of

Zi. The imaginary time-evolution of the spins is given by

v̇i =
d

dτ

(〈Z1〉
N 2

)
(7.8)

=
−2Ṅ
N 3
〈Zi〉+

1

N 2

d

dτ
〈ψ|Zi |ψ〉 (7.9)

= 2vi〈〈H〉〉 − 〈〈HZi + ZiH〉〉 . (7.10)

This is essentially an imaginary-time analogue of the Ehrenfest theorem. Since Pauli

211

operators Zi square to the identity, a diagonal Hamiltonian H can always be written as

H = RiZi + Si , (7.11)

for every site i, for some operators Ri, Si that are not supported on site i. Then, HZi =

ZiH = Ri + SiZi. Next, we make a mean-field assumption, 〈〈HīZi〉〉 ≈ 〈〈Hī〉〉 · 〈〈Zi〉〉,

where Hī is any local operator not supported on site i. Then, it follows that 〈〈HZi〉〉 ≈

〈〈Ri〉〉+ vi · 〈〈Si〉〉, and 〈〈H〉〉 ≈ vi · 〈〈Ri〉〉+ 〈〈Si〉〉, which gives

v̇i = 2
(
v2
i · 〈〈Ri〉〉+ vi〈〈Si〉〉 − 〈〈Ri〉〉+ vi · 〈〈Si〉〉

)
(7.12)

= −2
(
1− v2

i

)
· 〈〈Ri〉〉 . (7.13)

Next, we make a substitution ui := tanh−1 vi which maps the real line onto the open

interval (−1, 1). Then, v̇i = 1− sech2(ui)u̇i = (1− v2
i)u̇i, therefore we can write

u̇i = −2〈〈Ri〉〉. (7.14)

Note now that the term 〈〈Ri〉〉 is precisely the negative expected value of the force on spin

i, dH/dZi = Ri = −Fi. Finally, an imaginary time evolution discretized into small time

steps δτ obeys (in mean field)

vi(τ + δτ) = tanh
(
2δτFi + tanh−1 vi

)
. (7.15)

This equation bears similarity to the update rule for LT. In fact, for vi sufficiently small

212

and close to steady state v∗i , we can expand the inverse tangent as tanh−1 vi ≈ vi+v
3
i /3+

. . . ≈ −2v∗3i /3 + vi · (1 + v∗2i), which looks linear with a modified slope. In principle,

one could directly evolve the ui variables in time as per Eq. (7.15). However, the vi have

the advantage of being bounded in [−1, 1], while the ui are unbounded and may suffer

from issues of convergence. The above analysis reveals a surprising connection between

LT and a discretized, mean-field imaginary time evolution of classical spin expectation

values.

Our analysis suggests a generalization of LT to situations where the Hamiltonian is

not diagonal in the Z basis. In this context, we can represent each spin i as a 3D rotor

ri = (xi, yi, zi) = (〈〈Xi〉〉, 〈〈Yi〉〉, 〈〈Zi〉〉) of Pauli expectation values. Since the Paulis

square to the identity, a general spin Hamiltonian H can always be written as

H = PiXi +QiYi +RiZi + Si , (7.16)

for every site i, where Pi, Qi, Ri, Si are some Hermitian operators that do not take support

on site i. Then, HiZi + ZiHi = 2Ri + 2SiZi (and analogously for Xi, Yi), and therefore

ẋi = −2(1− x2
i) · 〈〈Pi〉〉 , (7.17)

and similarly for the other coordinates. More succinctly, if we define ρi :=(
tanh−1 xi, tanh−1 yi, tanh−1 zi

)
, then the imaginary time evolution becomes

ρ̇i = −2Fi (7.18)

213

where Fi =
(
〈〈 dH
dXi
〉〉, 〈〈 dH

dYi
〉〉, 〈〈 dH

dZi
〉〉
)

= (〈〈Pi〉〉, 〈〈Qi〉〉, 〈〈Ri〉〉). Then, we can imagine

a generalization of LT that discretizes the above equation and simulates the evolution of a

3D rotor. By “rounding” the expectation values of the final state, we arrive at a product

state estimate of the ground state. The study of this generalized algorithm will be left as

a subject of future work.

7.5 Hyperparameter optimization

In order to talk about the performance of LT on any given instance, we must first

consider variations in performance due to parameter setting and randomness. LT (as

implemented here) is a family of algorithms in the hyperparameters c, β, p. Moreover,

for fixed hyperparameters, any run of the algorithm has randomness due to the choice

of initial spin configuration. Therefore, the energy output at the end of a single run

of LT is a random variable dependent on (c, β, p). The median final energy with fixed

hyperparameters, however, is a determinate quantity, which we denote Ec,β,p.

Ec,β,p = medianv0∈[−1,1]×nLTc,β,p(v0) (7.19)

where, abusing notation, LT(v) denotes the output energy of LT with input configuration

v. By definition, half of the runs of LT are expected to produce an optimum with energy

lower than E, making the median energy a useful figure of merit. The true median energy

can be approximated in practice by the median value of M independent runs of LTc,β,p,

median {E1, E2, . . . , EM} = Ẽ ≈ Ec,β,p (7.20)

214

Since we ultimately wish to study the performance of LT as a whole, the hyperparameters

must be fixed via a well-defined procedure that takes as input the instance description and

returns an (ideally optimal) hyperparameter setting. The most rigorous criterion is global

optimization of the performance with respect to each hyperparameter independently. This

is important, e.g. to avoid spurious trends in the runtime scaling that arise from imperfect

hyperoptimization.

Since this is a computationally expensive task, we focus first on gaining a better

understanding of the effect of the hyperparameter on the algorithm performance and

providing formulas to minimize the resources needed for hyperparameter optimization.

2 0 2 4 6 8 10
log10(|c|)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

E/
E m

ax

median
max

Figure 7.1: Hyperparameter sweep for the instance ising2.5-100 (seed 5555). We vary c
over multiple orders of magnitude, and plot the median (lower line) and max (upper line) value of
optimum found, normalized by the global optimum, for several runs of the algorithm. It can be
seen that peak performance occurs when c ∼ c̄ (indicated by the vertical black line).

215

Response c.

The response c is the sensitivity of the spins to force. Intuitively, setting c too large

or too small would make the spins too responsive to displacement or frozen, respectively.

Therefore, we expect a regime for c values where the spins are optimally sensitive

to the force, and the algorithm should also perform well in this regime. Given a typical

length of spins vi ∼ 1 and maximum possible force on spin i, Fi ∼
N∑
j=1

|Jij|, a natural

guess for c is the inverse of the maximum force. We define

c̄ = 2

〈
N∑
j=1

|Jij|
〉−1

i

(7.21)

where the brackets 〈·〉i denote a mean over all sites in the graph. The factor of two is

chosen purely empirically. As shown in Fig. 7.1, we find that c̄ is indeed a natural scale

for the response, and optimal performance is typically found to be within an order 1 factor

of c̄. Hereafter, we use a rescaled hyperparameter η := c/c̄.

216

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

E/
E m

ax

median
max

Figure 7.2: Hyperparameter sweep for the instance ising2.5-100 (seed 5555). We plot the
median (blue, lower) and max (red, upper) performance as a function of β (arb. units), for a fixed
value of c ∼ c̄. The performance is sensitive to order 1 variation in β, varying from sub-random
(cut fraction 0.5) to close to optimal at β ' 0.7. This behavior is typical across all instances
studied.

β

The β parameter scales the value of the input to the tanh activation function.

Intuitively, this enables mapping the displaced spin to the linear response region of the

tanh function for maximum sensitivity. This also ensures that the spin stays of order 1

and therefore sensitive to forces applied in subsequent rounds.

217

Figure 7.3: Optimal β (arb. units) for a range of η values, plotted for a torus instance. For each
η, the optimal β was found by grid search. The fit to the functional form given in (7.22) is given
by the smooth curve in the figure. The curve profile and quality of fit seen here are typical to all
instances studied.

In Fig. 7.2, we show how the choice of β affects mean and best-case performance

for a particular instance. The peaks suggest an optimal setting for the value of β. We now

make an educated guess for β as we did for the response. For a fixed response η = c/c̄,

spin vi is displaced as vi → tanh β(vi + cFi). Since vi ≤ 1 for all i, the argument of the

tanh function must lie between [−β(1+η),+β(1+η)]. In order to be maximally sensitive

to displacement, we should set β such that β(1 + η) ∼ O(1). This gives us a functional

dependence between β and η as

β =
a

1 + bη
, (7.22)

where we have introduced two fitting parameters a, b. From the available instances, this

relationship can be checked by extracting the locus of optimal settings for (η, β) and

218

fitting them to the above functional form. The results are shown in Fig. 7.3. The quality

of fits suggests that the functional dependence given in Eq. (7.22) is accurate. In Fig. 7.4,

we show how the coefficients a, b cluster for different problems.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
b

0.7

0.8

0.9

1.0

1.1

1.2

a

ising2.5
ising3.0
pm1d
torus
w01
w05
w09
pm1s

Figure 7.4: Clustering in the fit coefficients a, b in (7.22) for different instances (units arbitrary).
We see that the fitting numerator a is close to 1 for most instances, while b varies considerably.
There is a reasonable degree of clustering by instance type in b.

From this analysis, we see that given a problem instance, the hyperparameters η, β

can be guessed with very little optimization, and tuned further, if necessary, by local

search in a range of order 1 in each parameter.

Number of rounds p.

The number of rounds p required by the algorithm is dictated by the convergence to

steady state. Qualitatively, this may be connected to the rate of information propagation

in the graph, via quantities such as the girth. Unlike for c, β however, a direct guess for p

219

may be harder to obtain.

Instead, we use a dynamic criterion to set the value of p. Since LT is iterative and

closely related to gradient descent, we expect that at some point during the algorithm, the

spin vector attains a steady state such that all subsequent displacements are smaller than

a given threshold. As the final state is determined by the quadrant containing the vector

and not the exact value of the vector, small displacements have a small or no effect on the

outcome.

In Fig. 7.5, we plot displacements between successive rounds of a subset of spins

in a fixed instance. It is seen that displacements quickly become small; for instance, at

p = 50, the displacements are of order 10−4. This convergence in the spin values is

seen across all spins in a given instance, and all instances studied. Therefore, once the

displacement of the state falls below a set threshold, we terminate the algorithm. While

this threshold is an additional parameter, it can be set to be sufficiently smaller than the

size of the hypercube.

220

0 100 200 300 400 500
Round number p

8

7

6

5

4

3

2

1

lo
g 1

0
v i

i
1
2
3
4
5

Figure 7.5: Displacement between successive rounds as a function of round number, for five
arbitrarily chosen spins from the random, 100-spin instance of type w05. The log displacement
approaches floating point precision after a short number of rounds, indicating that the updates can
be terminated early for the rounding step.

7.6 Dependence of LT dynamics on the hyperparameters

The implementation of LT studied here allows three hyperparameters, namely, the

number of rounds p, the response to force c, and β. We have discussed how to set

these hyperparameters for a given MAXCUT instance, giving (in the case of c, β) good

initial approximations that depend on the instance description, or (in the case of p) a

dynamic criterion based on the convergence of the state vector. Here we give a physical

description of the system dynamics and show, qualitatively, why it is reasonable to expect

such behaviors.

221

7.6.1 Behavior for a small instance.

For a small instance on 5 spins, with real weights on every edge chosen at random,

we show the evolution of the full spin configuration as a function of p. We see that

the system always finds the same steady-state configuration regardless of initial state

(some examples shown in Fig. 7.6). We can therefore plot how the steady state values

of each spin change as a function of β and η, Fig. 7.7. What we see is that the

system undergoes a transition in both parameters, from a phase with zero magnetization

on each spin to a phase where the spins have a preferred direction. This is broadly

consistent with the interpretation of β and η as being analogous to inverse temperature

and interaction strength. At high temperatures or low interaction strength, the spins

prefer an unmagnetized configuration while at low temperatures or higher interaction,

they find non-zero steady state configurations that correspond to low-energy solutions of

the optimization problem. From a computational standpoint, the latter regime is of most

interest.

222

0 10 20 30 40 50
Round number p

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

v i

i
1
2
3
4
5

0 10 20 30 40 50
Round number p

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

v i

i
1
2
3
4
5

Figure 7.6: Evolution of spins for a small instance (N = 5) for two randomly chosen initial
configurations (units arbitrary). Despite different initial states, the spins are seen to approach the
same steady state solution, up to an overall sign. Larger instances may have multiple steady states.

223

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

v
* i

i
1
2
3
4
5

0 1 2 3 4 5
= c/c

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

v
* i

i
1
2
3
4
5

Figure 7.7: Steady-state spin configurations as a function of β (top, η = 2) and η (bottom,
β = 0.7) for the same instance as Fig. 7.6 (units arbitrary). In both cases, the system transitions
from an “unmagnetized” phase for low η, β to a “magnetized” phase at high η, β.

7.6.2 Dynamics near steady-state.

We will analyze the behaviour of LT near a steady state solution v∗ that satisfies

v∗i = tanh [β (v∗i + cF ∗i)] for all spins i. Note that a steady state always exists: the all-zero

state v∗i = 0 is an example. More generally, the transcendental equation for steady state,

224

while not guaranteed to have other solutions, can be approximated as a linear equation

when v∗i � 1, which has non-zero solutions for particular values of β, c. Generically, we

expect other steady solutions lying within the hypercube, and find this to be true in our

numerics (e.g., Fig. 7.6).

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Energy, soft spin

0.5

0.6

0.7

0.8

0.9

1.0

En
er

gy
, r

ou
nd

ed
 sp

in

Instance type, R2

ising2.5, 90.82%
ising3.0, 92.94%
pm1d, 89.11%
torus, 65.81%
w01, 79.70%
w05, 91.42%
w09, 90.25%
pm1s, 90.56%

Figure 7.8: The objective function, normalized by the global optimum, evaluated at the soft spin (y
axis) and the corresponding rounded spin obtained at the end of an LT run, for several independent
runs of the algorithm on eight instances. Each instance is picked from a different instance type.
The correlation between the two quantities (given by R2 values in the legend) indicates that better
steady state soft spin configurations tend to map to better feasible solutions.

Suppose, for a given run of the algorithm, the system tends to a particular steady

state v∗ at long times, with the state at some finite time t given by vt = v∗ + δt, where

225

|δi,t| � |v∗i |. Then, to first order in the displacement, we have

vi,t+1 = tanh [β [(1+ cJ) · (v∗ + δt)]i] (7.23)

= tanh [β (v∗i + cF ∗i) + β [(1+ cJ) · δ]i] (7.24)

' tanh [β (v∗i + cF ∗i)] (7.25)

+β [(1+ cJ) · δ]i sech2 [β (v∗i + cF ∗i)] (7.26)

= v∗i + β
(
1− v∗2i

)
[(1+ cJ) · δ]i (7.27)

where we used the steady-state condition, and tanh′(x) = 1 − tanh2(x). Therefore, the

displacement at time t+ 1 is

δt+1 ' β
(
1− V ∗2

)
· (1+ cJ) · δt , (7.28)

where we defined the diagonal matrix V ∗ii = v∗i . Therefore, the norm of the displacement

vector close to steady state is bounded as

|δt+1| . |β| · ||
(
1− V ∗2

)
|| · || (1+ cJ) || · |δt| . (7.29)

Since || (1− V ∗2) || ≤ 1, and ||1+ cJ || ≤ 1 + |c| · ||J ||, it follows that

|δt+1| . β · (1 + c||J ||) · |δt| , (7.30)

assuming c, β ≥ 0. Finally, consider the following properties:

226

1. Since J has zero diagonal, then by the Gershgorin circle theorem, all eigenvalues

of J lie within a disc of radius maxi
n∑
j=1

|Jij|.

2. If c = ηc̄, where c̄ = maxi
n∑
j=1

|Jij|, then 1 + c||J || ≤ 1 + η.

Therefore, for a choice β & 1
1+η

, we expect

|δt+1| . |δt| (7.31)

giving the condition for dynamics converging to a steady state. Three observations can be

drawn from this:

1. c̄ provides a natural unit for the response c.

2. For optimal convergence, we expect the dependence between β and η = c/c̄ to be

given by β ' a/(1 + bη) for some parameters a, b.

3. Under the above circumstances, the trajectory near steady state is stable and follows

an exponential convergence towards the steady state solution. Therefore, the

algorithm can be “safely” terminated when the displacement is under a certain

threshold.

These three observations closely match our empirically derived rules for good

performance of LT. This indicates that the steady state solutions may also correlate with

the locations of good feasible solutions (given by the nearest hypercube vertex). This can

be seen in Fig. 7.8.

227

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
b

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ec

tra
l r

ad
iu

s o
f c

J

y = 0.16x + 0.71
R2 = 92.9%

ising2.5
ising3.0
pm1d
torus
w01
w05
w09
pm1s

Figure 7.9: Dependence of the fitting parameter b and the spectral radius of the the normalized
coupling matrix c̄J (units arbitrary). A linear regression fits the data with R2 = 92.9%, indicating
a strong linear relationship between the two quantities. Therefore, the spectral norm of the
coupling matrix can give a good estimate on the fitting parameter b and hence β.

7.6.3 Optimal parameters by instance type.

In fact, the quantity c̄ is defined not as the maximum but as a mean, Eq. (7.21).

However, the functional relationship β = a
1+bη

is still seen to hold for some a, b.

We can study the dependence of a, b by instance type. As shown in Fig. 7.4,

the parameters form clusters by instance type, and the value of a is close to 1 for all

instances studied. The value of b varies considerably from instance to instance. Looking

at the functional form, it is reasonable to guess that b is related to the spectral radius

of the coupling matrix J . While we bound the magnitude of the largest eigenvalue by

maxi
n∑
j=1

|Jij|, the actual value may be smaller, and b may be understood to reflect this

correction. We check this conjecture by plotting the relationship between ||J || and b for

228

every problem instance in Fig. 7.9.

This relationship can be particularly useful if the largest eigenvalue of the matrix

can be calculated or estimated quickly. Then, by inverting the linear regression shown

in Fig. 7.9, one obtains a good initial guess for b. The initial guess for a, on the other

hand, is simply 1. This potentially reduces the hyperparameter optimization to local

minimization in the single parameter η, which is computationally inexpensive.

Having given a physical description of the algorithm, we now turn to studying its

performance on practical problem instances.

7.7 Comparison with Gurobi

Gurobi is a commercial optimization software that solves a broad range of problems

including quadratic programming (QP), linear programming (LP), and mixed integer

programming. Additionally, the software includes in-built heuristics to find good initial

solution candidates quickly, as well as “pre-solve” subroutines and simplify the problem

description by eliminating redundant variables or constraints.

In order to use Gurobi, a MAXCUT instance can be relaxed to either a linear program

or a quadratic program. Mapped to an LP, the instance is specified by real variables

xij ∈ R to each edge, with the inequality constraints xij ≤ 1, where xij = 1 if and

only if the edge ij is in the cut. Additional constraints follow by observing that not all

configurations are feasible: for example, for three edges ij, jk, ki, at most two may be

part of a cut. Any feasible solution must satisfy such cycle constraints as well, expressible

as inequalities of the form xij+xjk+xki ≤ 2. Then, the LP is formulated as maximization

229

of the objective function wTx, subject to the above inequalities, where w represents the

vector of edge weights.

While the number of inequalities to fully characterize the feasible region are

exponential in the input, smaller sets of constraints can suffice for good approximate

solutions. The separation problem, which asks whether a candidate solution is in the

polytope or, if not, to give a hyperplane separating it from the polytope, is shown to

be polynomial-time in n for a particular choice of constraints [230]. This allows a

polynomial-time, cutting-planes algorithm for finding and including violated constraints

dynamically for each successive iteration of the LP until success. Theoretical results

suggest, however, that solutions to the LP relaxation can be far from the optimal value

in general, due to a large integrality gap (see, e.g, [231]). The formulation is somewhat

unnatural for MAXCUT, and is also seen to perform poorly in practice due to a blowup in

the number of variables.

A more natural formulation is as a QP with linear constraints, where every vertex i

is assigned to one variable si, and the problem is expressed as

max
1

4
sT ·W · s

s.t. − 1 ≤ si ≤ 1.

Here, the matrix W is the weighted graph Laplacian, with wii =
∑
k 6=i

wik and Wij = −wij

for i 6= j. The QP formulation is readily generalized to a semi-definite program by

promoting the spin variables to vectors of unit length on a m-dimensional sphere. This

forms the basis for the (optimal) Goemans-Williamson algorithm, [232], and is generally

230

the formulation of choice for exact solvers for MAXCUT. While Gurobi does not support

an SDP formulation, the QP formulation is supported, with solutions via interior point

methods (specifically, a parallel barrier method) and the simplex method. We therefore

input our instances into Gurobi as QPs.

10 2 10 1 100 101 102 103

T (Gurobi QP)
10 2

10 1

100

101

102

103

T
(L

T)

g05
pm1s
pm1d
w
pw

Figure 7.10: Performance of LT compared against Gurobi for several benchmarking instances.
The performance metric used is median time (in seconds) taken to find the optimum (over 10
runs), with a timeout of 103 seconds. Timed out instances are not shown: Out of 130 instances,
LT and Gurobi timed out on 47 and 22 instances, respectively, including 7 instances where both
timed out. Times faster than a certain threshold are reported by Gurobi as 0s (corresponding to
points along the left edge). LT and Gurobi find optima faster than each other in an equal number
of instances, with no clear instance-dependent advantange. The speedup on either side is in some
cases up to three orders of magnitude.

Then, we can compare the time to find optimal solution for Gurobi and LT on our

benchmarking instances. The time has to be carefully defined in each case for a fair

comparison. Gurobi is a deterministic algorithm, except for an initial (optional) heuristic

step for proposing an initial solution candidate which takes a small fraction of the total

runtime. The algorithm terminates when the optimum is found and proved. The latter

231

typically requires additional time to improve the upper bound on the optimum until it

matches the best optimum found. Since we use benchmarking instances that have known

optima, we define runtime leniently as the time to find (but not necessarily prove) the

optimal solution.

On the other hand, LT is randomized due to the random choice of initial state, and

multiple runs are necessary to gather statistics on the performance. Therefore, we define

runtime as the median performance over 30 independent runs of LT for each instance.

Furthermore, since LT requires parameter tuning, we allow up to 20 s of hyperparameter

tuning by grid search in β, η that is not considered part of the runtime. Note that the

results of Sec. 7.5 suggest that the parameters can be set automatically, either adaptively

as for p or by a well-motivated formula for η, β, without the need for a full grid search.

Then, as shown in Fig. 7.10, the runtime performance of LT and Gurobi can

be compared directly on every instance. We see that there is significant spread in

performance for every problem type, for both LT and Gurobi. Promisingly, there are

instances in every problem class for which LT is significantly faster than Gurobi.

The comparison with Gurobi illustrates that there may be cases where properly

tuned LT can outperform state-of-the-art solvers at a fraction of the time cost. It is

pertinent to ask whether the success of LT over other solvers can be predicted in advance,

using instance data (or quantities derived from it). We briefly address this question.

The most obvious performance indicator is the number of variables n. The instances

used in the time comparison with Gurobi were of size 60, 80, or 100. Another elementary

indicator is clause density, or the mean number of clauses per variable, which for a

232

weighted instance is the average row sum of the graph adjacency matrix, m :=
∑
i,j

Jij/n.

We also compute the average row sum of the absolute value of the weight matrix

m̄ :=
∑
i,j

|Jij|/n. Finally, the misfit parameter µ measures the degree of frustration in

the model. More precisely, it is the ratio of the ground state energy of the model to the

ground state energy of a frustration-free reference system. For a given MAXCUT instance,

a reference system with all weights Jij replaced by their negative absolute values −|Jij|

is frustration-free, with a ground state energy of−∑
i<j

|Jij|. On the other hand, the ground

state energy of the original instance is bounded below by −∑
i<j

Jij . Therefore, we define

misfit as

µ :=

∑
i<j

Jij∑
i<j

|Jij|
. (7.32)

Then, we ask: How well does a given performance indicator predict the runtime of LT

(or Gurobi) on a randomly chosen instance? More formally, treating the runtime and

indicator as random variables X, Y respectively, the predictive power can be expressed as

the conditional entropy H(Y |X), defined as

H(Y |X) := −
∑

x∈X ,y∈Y

p(x, y) log
p(x, y)

p(x)
, (7.33)

where the sum is taken over the support sets of X, Y . Informally, H(Y |X) quantifies

the number of additional bits needed to specify Y given knowledge of X . The largest

possible value of H(Y |X) is log |X | for a discrete sample space X , corresponding in

our case to the number of bins used to group the runtimes. We report the conditional

entropy normalized by this maximum, so that a normalized entropy of 0 (1) corresponds

233

Predictor Gurobi LT

n 0.73 0.69
m 0.68 0.63
m̄ 0.66 0.59
µ 0.56 0.53

Table 7.2: A tabulation of the normalized conditional entropy (as defined in Eq. (7.33)) of different
performance predictors with the runtime of Gurobi and LT on the benchmarking instances. Zero
indicates perfect prediction, while 1 corresponds to no predictability. The real-valued predictors
m, m̄, µ were binned into 20 equally spaced intervals, and the runtime was binned into 20
logarithmic intervals spanning the range 0.01s to 1000 s, with an additional bin for timed-out
instances (t > 1000s).

to perfect (no) predictability. The results are presented in Table 7.2. Relative to Gurobi,

the performance of LT is marginally more predictable using the instance data. However,

clearly discernable relationships between the performance and any of the indicators

studied here could not be obtained using the instance data available, suggesting the need

for further systematic study.

7.8 Comparison with gradient descent

An inspection of the LT implementation reveals that the algorithm is operationally

very similar to a gradient descent algorithm. The difference lies only in the fact that we

apply a nonlinear tanh wrapper to each spin value in every step, while gradient descent

is fully linear. This raises a natural question: does LT offer any advantage to gradient

descent?

We formalize this comparison. The MAXCUT Hamiltonian does not have an

extremum over Rn, as all of its second (and higher-order) derivatives in any single variable

vanish. Put differently, the Hessian of the cost function in the spin variables has zero on-

diagonal entries, and is therefore trace zero. So, the Hessian is indefinite everywhere,

234

implying that no point can take an extremal value. This implies that a gradient descent

algorithm must constrain the state vector to lie within a closed region of Rn; then the

optima are guaranteed to lie on the boundary of this region. The natural choice of region

is the n-dimensional hypercube Hn := [−1, 1]×n, whose vertices correspond to feasible

solutions to the MAXCUT problem. Then, any step that displaces the state vector outside

Hn must be modified to obey the constraint. We implement this by applying a cutoff

function to each spin at the end of every displacement step. The form of this function is

as follows:

cutoff(x) = sgn(x) ·min {1, |x|} . (7.34)

When applied to each spin as cutoff(βvi), this function has the effect of projecting every

spin component that exceeds an allowed range [−1/β, 1/β] onto the closest boundary of

the range. The free parameter β controls how wide the allowed range should be.

235

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
E/Emax (Gradient Descent)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

E/
E m

ax
 (L

T)
y = x
ising2.5
ising3.0
pm1d
torus
w01
w05
w09
pm1s

Figure 7.11: Performance of LT and gradient descent, given by the energy obtained as a fraction
of the maximum (with 1 being optimal), across different benchmarking instances. For each
instance shown, the performance has been averaged over 100 trials after a pre-optimization of
the hyperparamaters.

The full algorithm may then be written down:

1. Initialize all spins uniformly at random, vi ∈ [−1, 1].

2. Apply displacement to spin vi 7→ vi + c · Fi where Fi = ∂H/∂vi.

3. vi 7→ cutoff(βvi).

4. After p rounds, round each spin to its sign, ±1.

It is now apparent that GD mirrors LT, with the difference lying in the choice of

onsite activation function used: LT uses the tanh function while GD uses a hard cutoff

function. Both algorithms have identical free parameters p, c, β that play the same or

similar functional roles in each case. Then, we can compare the performances of these

236

algorithms on the same instances. In Fig. 7.11, we see that LT beats GD on average for

the instances studied. This suggests that the specific form of LT that uses a tanh function

offers an advantage over a hard cutoff function. This choice also corresponds to the

underlying physics described in Sec. 7.4.

7.9 Discussion

The benchmarking of our implementation of LT on the MAXCUT instances gives

evidence that LT can perform well in certain practical problem settings. We find that the

LT hyperparameters can be set using simple rules that obviate the need for a full, global

hyperoptimization, making the algorithm particularly lightweight.

It remains to be seen how well LT fares on problems other than MAXCUT. We

expect LT to show similar performance in closely related quadratic unconstrained binary

(QUBO) problems. More generally, we observe that the algorithm itself is specified by

a domain relaxation, and a notion of derivative of the objective function with respect to

each variable. These are minimal requirements found in many optimization problems,

for example mixed integer linear programs. Therefore, an interesting open question is

whether LT can be adapted for use in these settings as well.

The analysis in Sec. 7.4 suggests an alternative description of the algorithm as a

discretized simulation of imaginary-time dynamics in a spin system. It is interesting

whether this picture can be pursued to design improvements or variations to the algorithm,

or generalize it to other settings, for instance, on problems like quantum SAT where the

problem Hamiltonian is not diagonalizable in any local basis. It would also be interesting

237

to compare LT to other heuristic algorithms that mimic low-energy physical dynamics

such as simulated annealing, simulated quantum annealing, or substochastic Monte Carlo.

238

Chapter 8: Conclusion

In this thesis, we have studied several aspects of near-term quantum (or NISQ)

computation. For a summary of the thesis, we refer the reader to Chapter 1. Instead, here

we comment on the larger context surrounding our work, and end with some speculation

about the future.

8.1 Open problems

The first part of the thesis studies problems related to the connectivity between

qubits in quantum architectures. Our analysis simplifies the qubits as nodes in a graph,

and connects two qubits with an edge if they can be made to interact via two-qubit

gates (or Hamiltonians). We consider the problem of qubit routing on graphs of limited

connectivity, and compare different architectures on the basis of structural and functional

performance metrics. There are many open directions here for future work, such as the

development of routing algorithms in the presence of defective qubits (which is ongoing),

and the modeling of noise in the device via, e.g., weighted graphs. But aside from these

natural generalizations, it is interesting and important to tackle the larger problem of

circuit compilation on quantum architectures. Loosely, one can state this problem in

the following manner: Given a high-level description of a quantum algorithm, what is

239

the optimal way to execute it on the quantum hardware? It is not hard to see that this

question involves many sub-problems. What is the definition of ‘optimal’? What is the

optimal gate description of the algorithm? How to compile these gates into an executable

operation sequence? What should the underlying connectivity look like? Routing is

simply one part of this stack that allows distant gates to be executed on the device.

Therefore, it would be interesting to expand the scope of the problem ‘vertically’ in the

stack.

There is a rich array of open problems in variational algorithms as well. There

is considerable interest in these algorithms due to the abundance of hard optimization

problems in several domains such as quantum chemistry, constraint satisfaction, and,

to some extent, quantum simulation of quantum field theories [233]. Variational

algorithms are also interesting because of how well-suited they seem to be for NISQ

implementation. But behind the elegant simplicity of variational algorithms lies a rich

yet poorly understood phenomenology. This is due in part to the fact that variational

algorithms are really algorithm frameworks that can express a multitude of quantum

dynamics depending on the values of parameters used, and to get the optimal circuit

for a given problem one has to first perform an optimization over the parameter space.

Therefore, in order to understand variational algorithms, it is necessary to understand the

parameter landscapes of variational algorithms.

In this regard, we know of several guiding principles: the adiabatic theorem for

QAO [26], the fact that Trotterized QAO is a special case of QAOA [28], or that bang-

bang control is known to be sufficient for optimality on non-singular, linear control

problems [23]. But these results alone do not provide a complete description of the

240

quantum dynamics, and in fact, they are often inapplicable in practice. For example,

QAOA rarely approximates Trotterized QAO, because it is primarily designed to be a

low-depth, parameterized circuit. The bang-bang optimality guarantee breaks down due

to the ubiquitousness of singular time periods in the optimal control schedule [31]. And

running QAO at a rate inversely proportional to the square of the smallest spectral gap

is sometimes too conservative a strategy, as the adiabatic unstructured search protocol of

Roland and Cerf demonstrates [178]. The theory of variational algorithms is incomplete,

and there are (at least) two ways to build on it. The first is an empirical approach that

involves designing heuristic variational algorithms and discovering properties about the

cost landscape and its optima by trial and error. The second approach works from first

principles to prove guarantees on variational algorithms of a possibly idealized form.

These two approaches inform one another. Indeed, our empirical results on asymptotic

QAOA parameter curves in Chapter 6 have led to a subsequent first-principles approach

to understand the connections between quantum annealing, QAOA, and the underlying

optimal control theory [31, 234].

8.2 Perspectives about the future

The original motivations behind quantum computation run very deep: to represent

nature in its entirety, and, conversely, to harness the full representational power of nature

to computational ends. There is something profound about this idea that makes quantum

computing worth studying regardless of its fate. Having said that, I believe that large-scale

quantum computers will eventually be realized and they will be useful (and maybe even

241

indispensible). Based on forecasts on the progress of the field, it could be a few decades

(if not more) before universal, fault-tolerant quantum computers become widely available

commercially [235]. Over that period, quantum computers will not only grow in scale,

but likely also change in nature with the advent of transformative technologies. Quantum

computing in its mature form may be unrecognizable today, much like the classical

computation of yesteryear looks very different than it does today. With this growth, the

way quantum computing is represented (and understood) will change, becoming more

removed from the hardware layer. Perhaps this shift towards abstraction will bring about

more efficient ways to conceptualize quantum dynamics, and it is difficult to truly fathom

how different quantum science could look in that new paradigm.

242

Appendix A: Appendices to Chapter 6

A.1 Quantum Approximate Optimization Algorithm (QAOA)

The QAOA is an approximate optimization algorithm first introduced in 2014

by Farhi et al. [28], and has since enjoyed growing interest. The QAOA uses

alternating evolutions under two non-commuting operators, typically a problem (or cost)

Hamiltonian HA that encodes the cost function on the diagonal in (say) the σx basis, and

a transverse term HB = −
N∑
i=0

σyi that generates transitions between bit strings, such that

the initial state |+〉⊗Ny evolves into an approximate ground state of HA.

Practically, the most valuable feature of the QAOA seems to be its “learnability”

via a classical outer loop optimizer, where the discovery of the evolution angles in the

optimal QAOA schedule is achieved via the discovery of structure in the angle sequences

[194,197]. These patterns are seen quite generally across local Hamiltonian problems, and

while steps towards a theory describing optimal QAOA sequences have been taken [31],

several questions surrounding it remain open. Regardless, the structure in optimal QAOA

schedules may be harnessed to implement approximate state preparation in a scalable

manner and with a low overhead on quantum resources. We present a new heuristic

method that helps achieves this goal.

First, we discuss how to discover optimal QAOA1 schedules, i.e., QAOA schedules

243

for p = 1.

A.1.1 QAOA, p = 1

Despite its apparent simplicity, the p = 1 QAOA (or QAOA1) can be a powerful

state preparation ansatz. For example, hardness-of-sampling results are known for

QAOA1 circuits [191], closely mirroring the hardness of sampling from instantaneous

quantum polynomial (IQP) circuits (see next section for details). Furthermore, it is known

that the performance of the QAOA1 for certain combinatorial optimization problems

can be competitive with the best classical algorithms for the same problems [236].

Another desirable feature of the QAOA1 for local spin Hamiltonians is the tractability

of computing energy expectation values, as observed in [28]. A very similar result has

also been known in the setting of quantum dynamics [205,206]. For a two-local transverse

field spin Hamiltonian as in Eq. (1) in the main text, this leads to a formula for the energy

expectation under a state produced by the QAOA1, starting from the product state |+〉⊗N .

These formulas are applicable to many cases of interest in quantum state preparation and

optimization. Importantly, the time complexity to compute the formula is O(N3) in the

worst case, making it tractable to optimize the QAOA1 protocols for large spin chains.

244

0.0 0.2 0.4 0.6 0.8 1.0

Step (i− 1)/(p− 1)

0.0

0.1

0.2

0.3

0.4

0.5

β
i(

re
d
),
γ
i(

b
lu

e)

0 2 4 6 8 10 12 14 16

QAOA15, Step i

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
n
g
le

 β
i,
γ
i

Figure A.1: Convergence in p and N . Convergence of optimal angle curves with increasing
QAOA layers p (left), and number of spins N (right). The p-convergence plot was generated for
an N = 8 spin system, for p ranging from 20 up to 30, with higher p shaded darker. The N -
convergence figure was generated for a 15 layer QAOA, for N in the range of 4 to 14, with higher
N curves shaded darker.

A.1.2 QAOA, p > 1

The general analytical formula for p = 1 does not extend to the case where we

apply the QAOA for more than one layer. Here, we must turn to classical numerical

methods to find the optimal QAOA angles βi, γi for each layer i. For p layers, this is

an optimization on a 2p-dimensional space that grows exponentially with the depth of

the circuit. However, numerics done here and in [194, 197] have identified the existence

of minima that exhibit patterns in the optimal QAOA angles, namely that the angles,

when plotted as a function of their index i, form smooth curves for any p. While this

observation points to a deeper theoretical mechanism at play, it does not directly simplify

the optimization problem, since we must still search over all approximately smooth

sequences of the angles. Zhou et al. [194] have exploited the smoothness of the functions

by carrying out searches in the Fourier domain. Here, we follow a different route that

arises from some novel observations of these family of minima.

245

For each p, denote the special optimal angles by
{(
β∗(p),γ∗(p)

)}
p
, which we can

also think of as a pair of angle curves (as a function of step index i). As p is varied, we

may think of these minima as a family. We numerically find that this family exhibits the

following desirable features (for p sufficiently large):

1. The angles are non-negative, small and bounded.

2. For p sufficiently large, the two angle sequences β∗(p) and γ∗(p) are approximately

smooth.

3. The angle sequence β∗(p) (and correspondingly, γ∗(p)) when viewed as a function on

the normalized time parameter si = i−1
p−1

, is convergent in the parameter p. In other

words, as p is increased, the angle sequences β∗(p) and γ∗(p) approach a smooth,

asymptotic curve (See Fig. A.1.)

4. The energy expectation E(β∗(p), γ∗(p)) approaches the global minimum as p→∞,

and hence this family is asymptotically optimal.

The significance of the first point is that in experimental settings, large evolution times are

infeasible to implement due to decoherence, so these minima correspond to practicable

QAOA protocols. The third and fourth points suggest an inductive algorithm where a

locally optimal schedule for a given p may be discovered using the optimal schedule for

p− 1 as a prior.

Point 3 in the above list is a novel observation that allows us to construct a heuristic

that is efficiently scalable for large p. The main idea behind this construction is that the

minimal angle curves for a larger p may be guessed from the optimal curve of a smaller

246

p′ < p by interpolation. It should be noted that the angles in these curves remain roughly

the same size as p increases. Furthermore this size is large enough that interpretation

of QAOA as a Trotterized product series is not feasible with the corresponding error

terms being non-vanishing. Therefore, while tempting, it is not theoretically accurate to

interpret these curves as a Trotterized annealing path. The theoretical underpinnings of

these curves are still under investigation.

Using the above points, we use a bootstrapping algorithm to find the optimal angle

sequences, β∗(p) and γ∗(p), for a given p, as described below. Let q = 1, . . . , p denote an

intermediate angle index. Then:

1. For q = 1, use an analytic formula to find β∗(1) and γ∗(1).

2. For q = 2, choose an initial guess of β(2) =
(
β∗(1), β∗(1) − 0.2

)
and γ(2) =(

γ∗(1), γ∗(1) + 0.2
)
.

3. Perform a local optimization of β(2) and γ(2) in order to find β∗(2) and γ∗(2).

4. Repeat the next steps (5-7) for q = 3, . . . , p.

5. Create interpolating functions through the angle sequences, β∗(q−1) and γ∗(q−1),

using the normalized time si = i−1
q−2

as the independent parameter (we use a linear

interpolation for q = 3 and cubic for q > 3).

6. Choose the initial guesses for β(q) and γ(q) by sampling the interpolating function

from (5) at evenly spaced points separated by a normalized time distance of ∆s =

1/(q − 1).

7. Perform a local optimization of β(q) and γ(q) in order to find β∗(q) and γ∗(q).

247

The resulting angles β∗(p) and γ∗(p) should be at least a good local minimum of the

energy expectation value and approaches the global minimum as p→∞.

The q = 2 interpolation in step 2 is based on our observation that the β angles tend

to curve down at the end and the γ angles tend to curve up.

An important feature of our algorithm is that its asymptotic runtime is expected to

be efficient in p. This feature is predicated on the previous result that the angle curves

are generally convergent as p tends to infinity. The argument proceeds as follows: if

we assume a maximal deviation of the initial guess for layer q to be εq ≥ 0, then the

total l2-norm distance between the initial guess and the optimized curve is no greater

than εq
√
q, by the Cauchy-Schwarz inequality. Therefore, the local search algorithm is

confined to a ball of radius at most εq
√
q, and for a fixed error tolerance, the convergence

time for a standard local optimizer is O(ε2qq). Summing over convergence times for all

from q = 1, . . . , p, we have

T = O

(
p∑
q=1

qε2q

)
≤ O(p2) (A.1)

The last inequality above comes about as follows: while the summand depends

on the convergence rate of the sequence {εq}pq=1, it is upper bounded by O(q) for a

converging set of paths and an initial error ε1 of order 1. The latter is true since our angle

search domain is bounded and independent of N . Therefore, the sum is no greater than

O(p2). In practice, even faster runtimes are possible. Therefore, the bootstrap algorithm

exploits the structure of the special minima and provides a scalable route to multi-step

QAOA for the long-range TFIM. In fact, as discussed in the supplement and in [31],

248

α

-B/J

0.5

1.0

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

β(s) ⟶

γ(s) ⟶

s ⟶0 1

Figure A.2: Angle sequence curves. A collage of angle sequence curves, arranged by the
Hamiltonian parameters for which they were computed. In each subplot, curves for different
p ranging from 20 to 30 are overlaid, with higher p curves shaded darker. The horizontal axis
represents fractional step s = (i − 1)/(p − 1) ranging from 0 to 1, while the vertical axis gives
the value of the angles β (red), and γ (blue) in the range [0, 0.6]. The subplots are arranged
horizontally by−B/J0, increasing from 0.1 to 0.8 in steps of 0.1 (from left to right), and vertically
by the long-range power α = 0.5, 1.0, 1.5 (bottom to top). This collage shows the persistence of
structure in the optimal angle sequences for a range of Hamiltonians within the same family.

there is mounting numerical evidence that the path approach applies across a very general

variety of models on discrete as well as continuous systems.

A.1.3 Convergence in N

In the previous sections, we introduced a bootstrap algorithm that is asymptotically

efficient in the number of layers p. However, in order to be fully scalable the algorithm

must also be scalable in the system size N . This may not be possible in general (say for

random spin models), as the optimized angles for a particular small system may have no

bearing on the angles for a larger system. However, for the long-range TFIM, and indeed

any translationally-invariant model with a well-defined notion of metric and dimension

arising from the functional form of the coupling coefficients Jij , it is reasonable to expect

249

that the optimized angles depend on system size in a predictable way. This is indeed the

case for the long-range TFIM. There, it can be seen that the angle curves for varying

N appear similar in shape. Usefully, the curves also appear to be convergent to an

idealized curve for a hypothetical continuous, long-range spin chain. Once again, this

feature suggests that the optimized QAOA angle curves for small systems may be used as

initial guesses for larger systems within the same Hamiltonian family.

While it is not clear (due to numerical limitations) how fast the curves converge,

we argue that the rate should be weakly dependent (or independent) of the system size

N . For a given coupling function (such as inverse power-law) that decays as a function

of distance, we define a characteristic length scale, which may be called the skin depth

δ, that is the number of sites from the boundary that the coupling is a factor of e smaller

than the nearest-neighbour value. In other words, we define δ such that Ji,i+δ ∼ Ji,i+1/e.

Clearly, δ is independent of the system size N and depends only on the parameters of

the coupling function. For instance, for the long-range TFIM, δ ∼ e1/α. As N tends

to infinity, the fractional skin depth δ/N then “falls away” and becomes vanishing with

respect to the bulk region of the chain. Now, we make the assumption that any deviations

in the optimal QAOA schedules from N to N + 1 arise from change in the fractional skin

depth, which is reasonable for a translationally invariant model. The incremental change

in the fractional skin depth from N to N + 1 is δ/N − δ/(N + 1) ∼ O(1/N2). Therefore,

if the change in the optimal QAOA curves εN (in, say, l1-norm distance) is a smooth

function of the the fractional skin depth, then we expect it to vary as εN ∼ 1/poly(N).

Therefore, the total running time of a bootstrap from small system sizes to a given size N

250

6 8 10 12 14 16 18 20
N

10

20

30

40

50

60

70

80

1/
(1

)

p = 0

p = 1
p = 2
p = 3
p = 4
p = 5

0 1 2 3 4 5
p

1

2

3

4

Sl
op

e

8101214161820
N

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

|
|

0
|2

p = 0
p = 1
p = 2
p = 3
p = 4
p = 5

0 1 2 3 4 5
p

1

2

3

Sl
op

e

Figure A.3: Performance scaling in p,N . Behaviour of performance parameters η (left) and
squared ground state overlap (right) with increasing number of spins N (x axis) and p (colors),
for ideal power-law coupling with α = 1.1. We find that for each p, 1/(1 − η) grows linearly in
N with a slope that depends on p. (Inset) The slope is linear in p, suggesting that the performance
converges to 1 as η ∼ 1 − 1/(pN). On the right, we empirically observe that |〈ψ|ψ0〉|2 ∼ p/N ,
indicating that constant overlap with the ground state can be achieved with linear depth QAOA.
The x axis has been scaled as 1/N so that the linear relationship with the squared overlap is
apparent. The inset shows the linear trend with p.

should beO
(

N∑
k=1

1/poly(N)

)
which is sub-linear inN . Combining this observation with

the convergence in p, we see that for a given Hamiltonian family, optimized QAOA angle

curves for small p may be used as a rubric for the optimization for longer circuit depths.

Furthermore, if the Hamiltonian is translationally-invariant with decaying interactions,

the optimized QAOA schedules are expected to scale with N as well. Therefore, the

state preparation procedure under the QAOA for such a Hamiltonian family is scalable

in circuit “volume”, for a wide range of Hamiltonian parameters (Fig. A.2). This is our

main theoretical contribution in this work.

A.1.4 Scaling of η in p,N

Our performance parameter η, defined as

η ≡ E(β,γ)− Emax
Egs − Emax

, (A.2)

251

measures how close (in energy) the prepared state is to the ground state of the system. As

described in previous sections, the optimal angle curves for QAOA appear to converge to

a smooth, hypothetical curve, as a function of p as well as N . We show that under the

assumption that such a curve exists, there is a fast heuristic for finding optimal angles for

any finite p that is time-efficient in p and the number of spinsN (when used in conjunction

with the quantum device). In this section, we show that not only is the search efficient,

but the quality of the optimum is numerically seen to improve with p,N as well.

In Fig. A.3, we show the result of the numerical study. We chose as the target

Hamiltonian an idealized transverse field Ising model with inverse power-law couplings,

with the power α = 1.1 chosen to closely mimic the experimental Hamiltonian. The

number of spins was varied from N = 8 to 20. Via DMRG, the critical value of the

transverse field for a finite chain can be located by maximizing the von Neumann entropy

at half-cut. This was done independently for each value of N . Then, using our heuristic,

we located the optimal angle curve, and computed η for the final state prepared using

this angle sequence, for each N . The plot shows the trend of 1/(1 − η) with N , for a

range of p = 0, 1, 2, 3, 4, 5, with 0 corresponding to a trivial protocol where the initial

state is returned. While the number of spins could not be extended beyond 20 due to

computational limitations, the trend is clear. We see that 1/(1− η) grows linearly with N

and p (inset). While the linear trend in N is encouraging, we similarly expect the inverse

spectral gap (and indeed, the density of low-lying states) to increase with N . Empirically

for the target Hamiltonian, we observe a gap scaling of ∼ 1/N2. Assuming the density

of low-lying states scales similarly, this suggests that the squared overlap with the ground

state should fall off with N . Numerics confirm this expectation and indicate a scaling of

252

the squared overlap of |〈ψ|ψ0〉|2 ∼ p/N .

The linear scaling with p for both the energy and fidelity metric, combined with

a polynomial-time search heuristic, suggests that for any desired energy (or probability)

threshold ε, our approach allows us to approximate the state to within 1− ε (in energy or

fidelity) in time and number of layers that scale as poly(N, 1/ε).

A.1.5 Characteristic scale for η

The figure of merit η characterizes how close the final state is to the ground state

of the system. At η = 0, the system is in the highest excited configuration, while η = 1

corresponds to a perfectly prepared ground state. QAOA, starting from the initial state

|+〉⊗n, gives a state with figure of merit η ∈ [0, 1], from the initial value of η0. The

difference between the final η and η0 indicate the success of our QAOA protocol.

While η is normalized to the range [0, 1], differences in η are still somewhat

arbitrary. In long-range Ising models with a transverse field η0 is not 0 but typically

greater than 0.5, making the difference in η an unsatisfactory metric of success. Therefore,

in addition to the initial and final η, we must provide a characteristic scale for η that

quantifies the typical deviation from η0. A natural choice is the standard deviation of η

for QAOA with random angles.

For QAOA1 with evolution angles β, γ, it is possible to estimate the standard

deviation analytically as a function of the underlying model parameters B and J0 and

on the number of qubits N . This derives from the analytical formula for the energy

253

expectation E(β, γ) which can be stated as follows:

E(β, γ) = EI + EII + EIII (A.3)

where

EI = B
N∑
i=1

∏
k 6=i

cos (2γJik) (A.4)

EII = −sin (4β)

2

∑
i,j

Jij sin (2γJij)
∏
k 6=i,j

cos (2γJik) (A.5)

EIII = −sin2 (2β)

4

∑
s=±1,i,j

Jij
∏
k 6=i,j

cos (2γ (Jik + (−1)sJjk)) (A.6)

where the Hamiltonian has long-range power law couplings Jij ∼ 1
|i−j|α (with Jii = 0),

and a transverse field of strength B. Then, our goal is to compute the standard deviation

(normalized by the spectral bandwidth ∆ := Emax − Egs),

σE
∆

=

√
〈E2〉β,γ − 〈E〉2β,γ

∆
(A.7)

which gives us the characteristic scale for η. We define the average 〈·〉β,γ as

〈f〉β,γ := lim
Tβ ,Tγ→∞

1

4TβTγ

Tβ∫
−Tβ

Tγ∫
−Tγ

f(β, γ)dβdγ (A.8)

In the limit, the average is precisely the constant term of the Fourier transform of f . Since

the function is a sum of trigonometric monomials, its moments over the angle variables

β, γ can be computed analytically term by term. We will need the following properties of

254

the coupling function:

1. (Symmetry) Since the inverse power law only depends on distance between nodes,

we have Jij = J(2j−i)j In other words, the inverse power-law is symmetric under a

lateral flip (or “mirroring”). We assume a finite, open chain, and therefore couplings

Jij with |j − i| > N − j do not have an image under mirroring.

2. (Incommensurateness) The coupling strengths Jij are, in general, mutually

indivisible irrational numbers whose sums and differences are also irrational and

mutually distinct, e.g. for i 6= j, k 6= l, Jik ± Jjk 6= Jil ± Jjl (with a very small set

of exceptions due to, say, symmetry).

The mean 〈E〉β,γ consists of three parts corresponding to the terms EI , EII , EIII .

Performing the β integral first, we see that 〈EII〉β,γ = 0. Next, we may argue that in

products of the form
∏
k

cos(2γJik), the cosine factors are of degree one if they have no

mirror images, and degree two otherwise. The only way to have a non-zero expectation

is if all terms are systematically paired up by mirroring, so that the overall product is

quadratic in a product of cosines. For the summand inEI , this can only happen ifN is odd

and i is exactly at the center of the chain, in which case the average is B/2(N−1)/2. When

N is even, the mean is 0. Finally, for general i, j the last term is zero by property 2, since

the cosines are generically incommensurate and therefore barring very few exceptions,

most phases do not cancel out. However, in the special case that i, j are mirror images,

i.e. i = N − j, we have perfectly paired terms when N is even (and one unpaired

term at k = bN/2c when N is odd). Counting all occurrences of this case, the mean is

approximately 1
2N/2+1

N∑
i=1

Ji(N−i) . NJ0/2
N/2 where J0 is the nearest-neighbor coupling

255

in the chain. Note that asymptotically in N , 〈E〉β,γ ∼ O(N/2N/2) which approaches 0 in

the infinite N limit.

Next, we estimate the term 〈E〉2β,γ . By the orthogonality of trigonometric

polynomials in β, we first have that 〈E〉2β,γ = 〈EI〉2β,γ + 〈EII〉2β,γ + 〈EIII〉2β,γ . Therefore,

we estimate each term separately. As before, we require that the cosines pair up so that

their phases can cancel. First, we have

〈EI〉2β,γ = B2
∑
i,j

N∏
k=1

cos(2γJik) cos(2γJjk) (A.9)

Each summand is a product of 2N cosines, and only survives averaging if every

cosine is paired. This happens exactly when either i = j or i = N − j (There is also

the “disconnected” contribution that cancels with the mean). In each case, the squared

cosines give a factor of 1/2 from averaging. Moreover, using mirror symmetry we can

have fourth powers of some of the cosines, which give a factor 3/8 from averaging. In

all, the mean (minus the disconnected part) is no greater than

〈EI〉2β,γ . 4NB2

(
3

8

)(N−1)/2

(A.10)

A similar reasoning for EII , EIII give us the following estimates:

〈EII〉2β,γ .
1

4
NJ2

0

(
3

8

)(N−1)/2

(A.11)

〈EIII〉2β,γ .
3

16
NJ2

0

(
3

8

)(N−1)/2

(A.12)

256

Finally, this gives

〈E〉2β,γ . N

(
3

8

)N/2 [
8B2 + J2

0

]
∼ O(N · (3/8)N/2) (A.13)

Therefore, we see that the standard deviation ση = σE/∆ ∼
√

8B2+J2
0

∆
·

N1/4 (3/8)N/4, which is exponentially suppressed for large N . For N = 20 ions, we

have N1/4 · (3/8)N/4 ∼ 0.02. While this is already small, the normalization
√

8B2+J2
0

∆
will

have an additional linear N factor in the denominator, making the scale for η about 0.002.

Therefore, a typical final QAOA performance of η & 0.95 is several standard deviations

above a typical η0 ∼ 0.85.

A.2 Evidence for hardness of sampling from general QAOA circuits

In this section we expand upon previous work [28] that gives evidence for exact

sampling hardness of QAOA circuits, using the techniques of Refs. [208, 209] to give

evidence for hardness of approximate sampling. First we relabel the bases Y → X → Z

so that the p = 1 experiment is equivalent to preparing a state |ψ0〉 = |↑〉⊗Nx , evolving

under a Hamiltonian Hz diagonal in the computational basis, followed by a uniform

rotation H̃ = e−iβ
∑
i σ
x
i and measurement in the computational basis. Following

Ref. [28], it suffices to consider QAOA circuits with β = π/4. The output state is

H̃⊗Ne−iγHzH⊗N |0N〉 for some cost function C diagonal in the computational basis.

257

A.2.1 Generalized gap of a function

The main idea behind proving exact sampling hardness is to examine a particular

output amplitude, say the amplitude of the |0N〉 basis state. In Ref. [208], the output

state after a so-called IQP circuit (which only differs from the one here in that the final

rotation is a global Hadamard H⊗N instead of H̃⊗N) has an amplitude proportional to a

quantity known as the gap of a Boolean function, gap(f) =
∑

x:f(x)=0 1 −∑x:f(x)=1 1,

the difference in the number of inputs that map to 1 and the number of inputs that map

to 0 under f . Finding the gap of a general function is a GapP-complete problem. This is

a very hard problem since the class GapP includes #P, which in turn includes the whole

of NP. The authors of Ref. [208] prove that the gap of a degree-3 polynomial over Z2,

f , may be expressed as an output amplitude of an IQP circuit. They also show that the

finding the gap of such functions f is still GapP-complete. Following Ref. [208], we

examine the |0N〉 output amplitude of a QAOA state:

〈0N | H̃⊗Ne−iγHzH⊗N |0N〉 =
1

2N

∑
x,y

〈y| i
∑
i yi+f̃(x) |x〉 , (A.14)

where now we define the function f̃ to have the range Z4 and the Hamiltonian Hz

satisfies e−iγHz |x〉 = if̃(x) |x〉 for a computational basis state |x〉. The output amplitude

is thus proportional to a ‘generalized gap’ ggap(f) :=
∑

x:f(x)=0 1 + i
∑

x:f(x)=1 1 +

i2
∑

x:f(x)=2 1 + i3
∑

x:f(x)=3 1 of a function f(x) = f̃(x) + wt(x), where wt(x) is

the Hamming weight of x. This modified function f(x) is also a degree-3 polynomial

over Z4. Note that this restriction to degree-3 comes from the fact that the gates Z, CZ

258

and CCZ are universal for classical computation (indeed, the Toffoli alone is universal

for classical computation) and there is a natural degree-3 polynomial coming from this

construction. The quantity we have defined, ggap(f), can be easily shown to be GapP-

hard to compute, by reducing gap to ggap. This suffices for exact sampling hardness

assuming the polynomial hierarchy (PH) does not collapse.

A.2.2 Approximate sampling hardness

For approximate sampling hardness, we need two other properties, namely anti-

concentration and a worst-to-average case reduction. Anti-concentration of a circuit

roughly says that the output probability is sufficiently spread out among all possible

outcomes so that not many output probabilities are too small. We choose a random

family of QAOA circuits by choosing Hz such that the function f(x) is a degree-3

polynomial
∑

i,j,k ai,j,kxixjxk +
∑

i,j bi,jxixj +
∑

i cixi with uniformly random weights

bi,j and ci ∈ Z4. Anti-concentration then follows from the Paley-Zygmund inequality and

Lemma 4 of the Supplemental Material of Ref. [208] (with r = s = 4).

Finally, we need to show that the problem of approximating the generalized gap

is average-case hard. Currently, no scheme for quantum computational supremacy has

achieved this, and the best known result in this direction is in Ref. [209], where the authors

show a worst-to-average case reduction for the problem of exactly computing an output

probability of a random quantum circuit. The authors remark that their techniques may

be extended to any distribution parametrized by a continuous variable. In principle, we

have such a parameter γ available here, which continuously changes the parameters bi,j

259

and ci. However, we have only shown anti-concentration when the weights bi,j and ci

are chosen from a finite set. It remains to be seen whether one can have the property of

anti-concentration and average-case hardness holding at the same time for some specific

QAOA output distribution.

A.3 Trapped-ion experimental systems

In this work two quantum simulators have been used, referred to as system 1 and

2. System 1 [202] is a room-temperature ion-trap apparatus, consisting of a 3-layer linear

Paul trap with transverse center-of-mass (COM) motional frequency νCOM = 4.7 MHz

and axial center-of-mass frequencies νx ranging from 0.39 to 0.6 MHz depending on the

number of trapped ions. In this system Langevin collisions with the residual background

gas in the ultra high vacuum (UHV) apparatus are the main limitation to ion chain lifetime

[237]. These events can melt the crystal and eject the ions from the trap because of rf-

heating or other mechanisms.

260

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

r

J i,
i+
r/
J 0

N = 20
N = 25
N = 30
N = 35
N = 40

2.5 3.0 3.5 4.00

20

40

60

80

100

ν [MHz]

C
ou
nt
s
[a
.u
.]

�y
COM

<latexit sha1_base64="dNrLwOsBujFeDeBybWEN6ImE2BY=">AAACHXicbVDLSsNAFJ3Ud31VXboZLIKClKQKuiy6cSMqWFtoYplMb+vQySTM3Agl5Bv8BL/Cra7ciVtx4b+YxC60epjF4Zz7muNHUhi07Q+rNDU9Mzs3v1BeXFpeWa2srV+bMNYcmjyUoW77zIAUCpooUEI70sACX0LLH57kfusOtBGhusJRBF7ABkr0BWeYSd3KbuIWQzp64HuJs2fXsuekropvklHaTVwd0JPzszQtdytVu2YXoH+JMyZVMsZFt/Lp9kIeB6CQS2ZMx7Ej9BKmUXAJadmNDUSMD9kAOhlVLADjJcU1Kd2ODcOQRqCpkLQQ4WdHwgJjRoGfVQYMb82kl4v/eZ0Y+0deIlQUIyieL0IhoVhkuBZZVkB7QgMiyy8HKhTlTDNE0IIyzjMxzsLL83Amf/+XXNdrzn6tfnlQbRyPk5knm2SL7BCHHJIGOSUXpEk4uSeP5Ik8Ww/Wi/VqvX2Xlqxxzwb5Bev9C9OaoUs=</latexit>

�z
COM

<latexit sha1_base64="n9kfoevqBjwRXefWTScQV5WykXs=">AAACHXicbVDLSsNAFJ34tr6qLt0MFkGhhKQKuix240ZUsCo0sUzGax06mYSZG6GGfIOf4Fe41ZU7cSsu/BeT2IVaz+pwzn2eIJbCoON8WGPjE5NT0zOzlbn5hcWl6vLKmYkSzaHNIxnpi4AZkEJBGwVKuIg1sDCQcB70W4V/fgvaiEid4iAGP2Q9Ja4FZ5hL3epW6pVDOroX+Klj1926Y7uZp5LL9C7rpp4OaevoMMsq3WrNsZ0SdJS4Q1IjQxx3q5/eVcSTEBRyyYzpuE6Mfso0Ci4hq3iJgZjxPutBJ6eKhWD8tLwmoxuJYRjRGDQVkpYi/OxIWWjMIAzyypDhjfnrFeJ/XifB6z0/FSpOEBQvFqGQUC4yXIs8K6BXQgMiKy4HKhTlTDNE0IIyznMxycMr8nD/fj9Kzhq2u203TnZqzf1hMjNkjayTTeKSXdIkB+SYtAkn9+SRPJFn68F6sV6tt+/SMWvYs0p+wXr/AtUzoUw=</latexit>

��k
<latexit sha1_base64="OzKAZG0yN2e5HWb9zBneWlgvBAI=">AAACGHicbVC5TsNAFFxzhnAFKGlWBCSKKLIDEpQRUFCCRAAptqLnzSOssj60+xwpsvwDfAJfQQsVHaKlo+BfsE0KrqlGM+8cP1bSkG2/W1PTM7Nz85WF6uLS8spqbW390kSJFtgRkYr0tQ8GlQyxQ5IUXscaIfAVXvnD48K/GqE2MgovaByjF8AglDdSAOVSr7aduuWQrh74Xmo37IbTzNwRitQ9QUXAh1lW7dXqdtMuwf8SZ0LqbIKzXu3D7UciCTAkocCYrmPH5KWgSQqFWdVNDMYghjDAbk5DCNB4aXlIxncSAxTxGDWXipcifu9IITBmHPh5ZQB0a357hfif103o5tBLZRgnhKEoFpFUWC4yQss8JuR9qZEIisuRy5AL0ECEWnIQIheTPLciD+f393/JZavp7DVb5/v19tEkmQrbZFtslznsgLXZKTtjHSbYHXtgj+zJureerRfr9at0ypr0bLAfsN4+AVfRn34=</latexit>

y
<latexit sha1_base64="3JSp9kApyasGVH01Vh57/q9U1rw=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrIDEpQRNJSJRB5SYkXnyyaccj5bd3tIkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7S2vrG5Vd6u7Ozu7R9UD4+6JrKaQ4dHMtL9gBmQQkEHBUroxxpYGEjoBbPbzO89gjYiUvc4j8EP2VSJieAMU6k9H1Vrbt3NQVeJV5AaKdAaVb+G44jbEBRyyYwZeG6MfsI0Ci5hURlaAzHjMzaFQUoVC8H4SR50Qc+sYRjRGDQVkuYi/N5IWGjMPAzSyZDhg1n2MvE/b2Bxcu0nQsUWQfHsEAoJ+SHDtUgbADoWGhBZlhyoUJQzzRBBC8o4T0WbVlJJ+/CWv18l3Ubdu6g32pe15k3RTJmckFNyTjxyRZrkjrRIh3AC5Ik8kxfHOq/Om/P+M1pyip1j8gfOxzeJZpGG</latexit>

z
<latexit sha1_base64="62yKt2OB5zVINQAZEBJFIJ0nGtk=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrIDEpQRNJSJREKkxIrOl0045Xy27vaQgpUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6JrKaQ4dHMtK9gBmQQkEHBUroxRpYGEi4C6bXmX/3ANqISN3iLAY/ZBMlxoIzTKX247Bac+tuDrpMvILUSIHWsPo1GEXchqCQS2ZM33Nj9BOmUXAJ88rAGogZn7IJ9FOqWAjGT/Kgc3piDcOIxqCpkDQX4fdGwkJjZmGQToYM782il4n/eX2L40s/ESq2CIpnh1BIyA8ZrkXaANCR0IDIsuRAhaKcaYYIWlDGeSratJJK2oe3+P0y6Tbq3lm90T6vNa+KZsrkiByTU+KRC9IkN6RFOoQTIE/kmbw41nl13pz3n9GSU+wckj9wPr4BivWRhw==</latexit>

a b

�
<latexit sha1_base64="5NOiXtGZ7LvJNOib/p8hxgAHZvk=">AAAB+3icbVC7TgJBFJ3FF+ILtbSZSEysyC6aaEm0scREHgY25O5wgQmzj8zcJSGEr7DVys7Y+jEW/ou76xYKnurknPs8XqSkIdv+tApr6xubW8Xt0s7u3v5B+fCoZcJYC2yKUIW644FBJQNskiSFnUgj+J7Ctje5Tf32FLWRYfBAswhdH0aBHEoBlEiPvSloGiNBv1yxq3YGvkqcnFRYjka//NUbhCL2MSChwJiuY0fkzpNxUihclHqxwQjEBEbYTWgAPhp3nh284GexAQp5hJpLxTMRf3fMwTdm5ntJpQ80NsteKv7ndWMaXrtzGUQxYSDSRSQVZouM0DJJAvlAaiSC9HLkMuACNBChlhyESMQ4iaaU5OEsf79KWrWqc1Gt3V9W6jd5MkV2wk7ZOXPYFauzO9ZgTSaYz57YM3uxFtar9Wa9/5QWrLznmP2B9fEN1C6VGA==</latexit>

Figure A.4: System 2 characterization. (a) Sideband resolved spectroscopy of a 32 ion chain
with frequencies νyCOM = 4.18 MHz and νzCOM = 4.06 MHz, with both transverse families
identified. Inset: geometrical configuration of the global Raman beams (blue arrows) with respect
to the transverse principal axes of the trap (black arrows). The ellipsoid shows qualitatively an
equipotential surface of the trap. (b) Average spin-spin interaction matrix element Ji,i+r as a
function of ion separation r = |i − j| for the data taken in Fig. 2c in the main text, calculated
with the system parameters directly measured with sideband spectroscopy, using Eq. (A.16). The
results are normalized to the average nearest-neighbour coupling J0 for each system size.

System 2 [32] is a cryogenic ion-trap apparatus based on a linear blade trap with

four segmented gold coated electrodes. The trap is held at 6.5 K in a closed cycle cryostat,

where differential cryo-pumping reduces the background pressure at low 10−12 Torr level,

which allows for long storage times of large ion chains. For this reason system 2 has been

used to perform the QAOA with a large number of qubits (Fig. 2b) or when a large

number of measurements was required (Fig. 4). The two transverse trap frequencies are

νyCOM = 4.4 MHz and νzCOM = 4.26 MHz, and the axial frequency ranges from 0.27 to

0.46 MHz.

A.3.1 State preparation

The qubit is initialized by applying resonant 369.5 nm light for about 20 µs to

optically pump into the |↓〉z state. To perform global rotations in the Bloch sphere, we

apply two far-detuned, non-copropagating Raman beams whose beatnote is tuned to the

261

hyperfine splitting ν0 = 12.642821 GHz of the clock states 2S1/2 |F = 0,mF = 0〉 and

2S1/2 |F = 1,mF = 0〉 encoding the qubit [238]. State preparation in our implementation

of the QAOA requires qubit initialization in the |↓〉z state by optically pumping the ions

and then a global rotation into the |↑〉y state using stimulated Raman transitions. We detect

the state of each ion at the end of each experimental sequence using state-dependent

fluorescence, with single site resolution. In order to improve the accuracy of global qubit

rotations, we employ a composite pulse sequence based on the dynamical decoupling

BB1 scheme [239]. This allows us to compensate for inhomogeneity due to the Raman

beam’s Gaussian profile and achieve nearly 99% state preparation fidelity. The BB1 four

pulse sequence is:

U1(π/2) = e−i
π
2
σθi e−iπσ

3θ
i e−i

π
2
σθi e−i

π
4
σxi ,

where after the first π/2 rotation e−i
π
4
σxi , three additional rotations are applied: a π-pulse

along an angle θ = cos−1(−1/16) = 93.6 deg, a 2π-pulse along 3θ, and another π-pulse

along θ. The axes of these additional rotations are in the x-y plane of the Bloch sphere

with the specified angle referenced to the x-axis.

262

1 2 5 10
0.01

0.05

0.10

0.50

r (distance between ions)

J
{i
,i
+
r
}
(k
H
z)

N = 12

1 2 5 10 20

0.005

0.010

0.050

0.100

0.500

r (distance between ions)

N = 20

Compound Fit

Power Law

Exp. Decay

Exact

1 2 5 10 20

10-4

0.001

0.010

0.100

r (distance between ions)

N = 40

Figure A.5: Log-log plot of spin-spin interactions: red points represent the average Ising
couplings between spins separated by distance r = |i − j|, calculated from experimental
parameters using Eq. A.15. These plots show the exact average couplings and fits corresponding
to the N = 12 and N = 20 gradient descent experiments (Fig. 3 in the main text) and the
N = 40 exhaustive search experiment (Fig. 2c in the main text). The power law fit (blue dashed
curve) fails to match the couplings for larger spin separations, as does an exponential fit (green
dashed curve). The compound formula (Eq. A.18) fits well the actual couplings for all spin
separations, even for a chain of 40 ions. The fitted parameters {J0, α

′, β′} for N = 12, 20, and 40
are {0.580, 0.322, 0.229}, {0.517, 0.318, 0.181}, and {0.369, 0.383, 0.134} respectively.

A.3.2 Generating the Ising Hamiltonian

We generate spin-spin interactions by employing a spin dependent force with a pair

of non-copropagating 355 nm Raman beams, with a wavevector difference ∆k aligned

along the transverse motional modes of the ion chain. The two off-resonant Raman beams

are controlled using acousto-optic modulators which generate two interference beatnotes

at frequencies ν0 ± µ in the Mølmer-Sørensen configuration [240]. In the Lamb-Dicke

regime, the laser-ion interaction gives rise to the effective spin-spin Hamiltonian in Eq.

(1) in the main text, where the coupling between the i-th and j-th ion is:

Jij = Ω2νR
∑
m

bimbjm
µ2 − ν2

m

. (A.15)

Here Ω is the Rabi frequency, νR = h∆k2/(8π2M) is the recoil frequency, νm is the

frequency of the m-th normal mode, bim is the eigenvector matrix element for the i-th

263

ion’s participation to the m-th normal mode (
∑

i |bim|2 =
∑

m |bim|2 = 1) [241], and M

is the mass of a single ion.

Differently from system 1, where the wavevector difference ∆k of the Raman

beams is aligned along one of the principal axes of the trap, in system 2 the spin-spin

interaction stems from the off-resonant coupling to both families of transverse normal

modes. Eq. (A.15) is then generalized to:

Jij = Jyij + Jzij,

J `ij = Ω2
`ν

`
R

∑
m

bimbjm

µ2 − (ν`m)2 , ` = y, z, (A.16)

where ν`R is the recoil frequency given by the projection of the Raman wavevector ∆k

along the two transverse principal axes of the trap ` = y, z. We infer an angle ϑ ∼ 40o

between ∆k and the z principal axis (see inset in Fig. A.4a) from the ratio between

the resonant spin-phonon couplings to the two transverse COM modes. Before every

experiment, we perform Raman sideband cooling on both the COM and the two nearby

tilt modes for both transverse mode families.

As we scale up the number of qubits (see Fig. 2c in the main text), we vary the axial

confinement in order to maintain a self-similar functional form of the spin-spin interaction

(see Fig. A.4b). For the data in Fig. 2c in the main text, we set the detuning to δ =

µ−ωyCOM = 2π×45 kHz and the axial frequency to νx = 0.46, 0.37, 0.36, 0.31, 0.27 MHz,

forN = 20, 25, 30, 35, 40 respectively. For the data in Fig. 4 in the main text, the detuning

is δ/2π = 45 kHz and the νx = 0.54 MHz.

264

A.3.3 Fitting Ising Couplings to Analytic Form

By directly measuring trap parameters and spin-phonon couplings, we can calculate

the spin-spin interaction matrix Jij with Eqs. (A.15) and (A.16). However, in order to

efficiently compute the ground state energy of the Hamiltonian in Eq. (1) (see main

text) for N & 25 using DMRG, we approximate the Ising couplings using a translational

invariant analytic function of the ion separation r = |i − j|. For N < 20 the spin-spin

coupling Jij between the two qubits at distance r is well approximated by a power law

decay:

Jij ≈
J0

rα
, (A.17)

where, as stated in the main text, J0 is the average nearest-neighbor coupling and α is the

power law exponent [203]. However for larger system sizes, this approximation fails to

capture the actual decay of the interaction matrix.

In order to use the DMRG algorithm to accurately compute the ground state energies, we

developed a compound function to better fit our couplings. This function is a product of

a power law decay and an exponential decay parametrized by J0, α′ and β′:

Jij ≈
J0

rα′
e−β

′(r−1) (A.18)

As seen in Fig. A.5, this functional form fits well the exact Ising couplings even for a

chain of 40 ions, while both a power law and a pure exponential fit diverge significantly.

265

A.3.4 State Detection

We detect the ion spin state by globally rotating all the spins into the measurement

basis with a composite BB1 π/2 pulse as described above, to rotate the x or y

basis into the z basis), followed by the scattering of resonant laser radiation on the

2S1/2 |F = 1〉 ↔2P1/2 |F = 0〉 cycling transition (wavelength near 369.5 nm and radiative

linewidth γ/2π ≈ 20 MHz). If the atom is projected in the |↑〉z “bright” state, it fluoresces

strongly, while if projected in the |↓〉z “dark” state it fluoresces almost no photons because

the laser is far from resonance [238].

In both systems the fluorescence of the ion chain is imaged onto an Electron

Multiplying Charge Coupled Device (EMCCD) camera (Model Andor iXon Ultra 897)

using an imaging objective with 0.4 numerical aperture and a magnification of 90x for

both systems. The fluorescence of each ion covers roughly a 7x7 array of pixels on the

EMCCD. After collecting the fluorescence for an integration time of 0.65 (1) ms for

system 1 (2), we use a binary threshold to determine the state of each ion, discriminating

the quantum state of each ion with near 98% (97%) accuracy in system 1 (2). The

residual 2 (3)% errors include off-resonant optical pumping of the ion between spin states

during detection as well as detector cross-talk between adjacent ions, readout noise, and

background counts.

In system 2 the individual ion range-of-interests (ROIs) on the camera are updated

with periodic diagnostic images, acquired by applying a nearly resonant cooling laser for

50 ms so that each ion fluoresces strongly regardless of its state. The signal to background

noise ratio in the diagnostic shots is larger than 100, yielding precise knowledge of the

266

a b

, we explain most of the discrepancy between our experimental performance and the
ideal QAOA energy output.

Figure A.6: Errors in trapped-ion quantum simulator: (a) Phonon-assisted bit-flips per ion
predicted by evolving the coherent off-resonant spin-phonon drive for 12 ions. The simulation
includes slow drifts of the trap frequency and of the laser power over 500 shots, each including a
Hamiltonian evolution of 0.11 ms, with δ/2π = 45 kHz and Ω/2π = 440 kHz. The shaded region
is defined as the average pi plus and minus one standard deviation (see main text for details). (b)
Energy as a function of the γ parameter scan for Fig. 4 in the main text. Taking into account our
total bit-flip error budget together with uncompensated light shift

ions’ center locations and taking into account the slow ∼ 2µm pk-pk drift due to thermal

expansion/contraction of the cryostat. Ion separations range from 1.5 µm to 3.5 µm

depending on the trap settings and the distance from the chain center, and are always

much larger than the resolution limit of the imaging system. We utilize the pre-determined

ion centers to process the individual detection shots and optimize the integration area on

the EMCCD camera to collect each ion’s fluorescence while minimizing cross-talk. We

estimate cross-talk to be dominated by fluorescence from nearest-neighbor, which can

cause a dark ion to be erroneously read as bright.

A.3.5 Error sources

The fidelity of the quantum simulation is limited by experimental noise that causes

the system to depart from the ideal evolution and that can have several sources that are

267

reviewed below. One important error source is off-resonant excitation of motional modes

of the ion chain, which causes residual spin motion-entanglement. When the motion is

traced out at the end of the measurement this results in a finite probability of an unwanted

bit-flip. The probability of this error to occur on the ith ion [202] is proportional to

pi ∼
∑N

m=1 (ηimΩ/δm)2, where ηim = bim
√
νR/νCOM (see Eq. (A.15)) and δm = µ−ωm

is the beatnote detuning from the m-th normal mode. We trade off a lower error for a

weaker spin-spin coupling by choosing a δCOM such that (ηCOMΩ/δCOM)2 . 1/10. By

considering the off-resonant contributions of all the modes (see Fig. A.6), we estimate the

phonon error to cause about 1% bit-flip per ion. Additionally, bit-flip errors are affected

by fluctuations in the trap frequency and laser light intensity at the ions’ location. To take

this into account, we included slow drifts and fluctuations of the trap frequency and of

the laser power on the timescale of 500 experimental repetitions assuming noise spectral

density falling as 1/f . Given our typical trap frequency and laser power fluctuations, we

assume a relative standard deviation ∆Ω/Ω ∼ 2% and ∆δCOM/δCOM ∼ 9% over the

timescale required to average over quantum projection noise and we end up estimating

an average bit-flip probability pi ∼ 1% (see Fig. A.6a). Moreover, laser intensity,

beam steering and trap frequency slow drifts over the time scale of a few hours required

for data-taking cause averaging over different Ising parameters J0. In particular, beam

steering fluctuations create an imbalance between the red and blue ν0 ± µ beatnotes at

the ions, producing an effective Bz noisy field, that has been estimated to be as high as

∼ 0.65J0. To take into account these drifts, we calculated several evolutions sampling

from a Gaussian distribution of values of Bz and J0, using as a variance the standard

deviations (σJ0 = 0.18J0 and σBz = 0.4J0) observed in the experiment. Another source

268

of bit-flip errors is imperfect detection. Off-resonant pumping limits our average detection

fidelity to 98%(97%) for system 1 (2). A detection error is equivalent to a random bit-flip

event so the two errors will sum up. A specific source of noise in system 2 is mechanical

vibrations at 41 Hz and 39 Hz due to residual mechanical coupling to the cryostat [32].

This is equivalent to phase-noise on the Raman beams, which leads to dephasing of the

qubits. Other less important noise sources are related to off-resonant Raman scattering

errors during the Ising evolution (estimated in 7 · 10−5 per ion) and RF heating of the

transverse COM motional mode of the ion chain in system 1.

In Fig. A.6b, we plot the experimentally measured energy as a function of γ, and the

corresponding theoretical curves with and without incorporating errors. Using the time

dependent average bit-flip probability evolution that we estimated from our error model

considering phonons and detection errors and averaging over slow drifts in experimental

parameters J0 and Bz, we get a good agreement with the experimental data (see also Fig.

2c in the main text, where the same parameters have been used), showing that we have a

good understanding of the noise sources in our system.

269

Bibliography

[1] Yuri Manin. Computable and Uncomputable. Sovetskoye Radio, 1980.

[2] Paul Benioff. The computer as a physical system: A microscopic quantum
mechanical hamiltonian model of computers as represented by turing machines.
Journal of statistical physics, 22(5):563–591, 1980.

[3] Richard P Feynman. Simulating physics with computers. In Feynman and
computation, pages 133–153. CRC Press, 2018.

[4] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79,
August 2018.

[5] Martin Suchara, Arvin Faruque, Ching-Yi Lai, Gerardo Paz, Frederic T Chong,
and John Kubiatowicz. Comparing the overhead of topological and concatenated
quantum error correction. arXiv preprint arXiv:1312.2316, 2013.

[6] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M.
Gambetta. Validating quantum computers using randomized model circuits. Phys.
Rev. A, 100:032328, Sep 2019.

[7] C. Monroe and J. Kim. Scaling the ion trap quantum processor. Science,
339(6124):1164–1169, 2013.

[8] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and
J. Kim. Large-scale modular quantum-computer architecture with atomic memory
and photonic interconnects. Physical Review A, 89(2), 2 2014.

[9] Teresa Brecht, Wolfgang Pfaff, Chen Wang, Yiwen Chu, Luigi Frunzio, Michel H.
Devoret, and Robert J. Schoelkopf. Multilayer microwave integrated quantum
circuits for scalable quantum computing. npj Quantum Information, 2(16002),
2016.

[10] Ying Li and Simon C. Benjamin. Efficient variational quantum simulator
incorporating active error minimization. Phys. Rev. X, 7:021050, Jun 2017.

270

[11] Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error mitigation for short-
depth quantum circuits. Phys. Rev. Lett., 119:180509, Nov 2017.

[12] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A.
Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William
Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig
Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P.
Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang,
Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri,
Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander
Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry
Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony
Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer
Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre
Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan,
Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J.
Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore
White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M.
Martinis. Quantum supremacy using a programmable superconducting processor.
Nature, 574(7779):505–510, 10 2019.

[13] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access
memory. Phys. Rev. Lett., 100:160501, Apr 2008.

[14] Aniruddha Bapat, Zachary Eldredge, James R. Garrison, Abhinav Deshpande,
Frederic T. Chong, and Alexey V. Gorshkov. Unitary entanglement construction in
hierarchical networks. Physical Review A, 98(6), 2018.

[15] Andrew M. Childs, Eddie Schoute, and Cem M. Unsal. Circuit transformations
for quantum architectures. In Wim van Dam and Laura Mancinska, editors,
14th Conference on the Theory of Quantum Computation, Communication and
Cryptography (TQC 2019), volume 135 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 3:1–3:24, Dagstuhl, Germany, 2019. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[16] Andrew Y. Guo, Minh C. Tran, Andrew M. Childs, Alexey V. Gorshkov, and Zhe-
Xuan Gong. Signaling and scrambling with strongly long-range interactions. Phys.
Rev. A, 102:010401, Jul 2020.

[17] Matthäus Halder, Alexios Beveratos, Nicolas Gisin, Valerio Scarani, Christoph
Simon, and Hugo Zbinden. Entangling independent photons by time measurement.
Nature physics, 3(10):692–695, 2007.

[18] Aniruddha Bapat, Eddie Schoute, Alexey V Gorshkov, and Andrew M Childs.
Nearly optimal time-independent reversal of a spin chain. arXiv preprint
arXiv:2003.02843, 2020.

271

[19] Aniruddha Bapat, Andrew M Childs, Alexey V Gorshkov, Samuel King, Eddie
Schoute, and Hrishee Shastri. Quantum routing with fast reversals. arXiv preprint
arXiv:2103.03264, 2021.

[20] Sukin Sim, Peter D Johnson, and Alán Aspuru-Guzik. Expressibility and
entangling capability of parameterized quantum circuits for hybrid quantum-
classical algorithms. Advanced Quantum Technologies, 2(12):1900070, 2019.

[21] Zoë Holmes, Kunal Sharma, M Cerezo, and Patrick J Coles. Connecting
ansatz expressibility to gradient magnitudes and barren plateaus. arXiv preprint
arXiv:2101.02138, 2021.

[22] Arthur W Leissa. The historical bases of the rayleigh and ritz methods. Journal of
Sound and Vibration, 287(4-5):961–978, 2005.

[23] L. S. Pontryagin. Mathematical theory of optimal processes. Routledge, 2018.

[24] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik. The theory
of variational hybrid quantum-classical algorithms. New Journal of Physics,
18(2):023023, 2016.

[25] Z. C. Yang, A. Rahmani, A. Shabani, H. Neven, and C. Chamon. Optimizing
variational quantum algorithms using pontryagin’s minimum principle. Physical
Review X, 7(2):1–8, 2017.

[26] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum
Computation by Adiabatic Evolution. arXiv e-prints, pages quant–ph/0001106,
Jan 2000.

[27] Tadashi Kadowaki and Hidetoshi Nishimori. Quantum annealing in the transverse
ising model. Phys. Rev. E, 58:5355–5363, Nov 1998.

[28] E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization
algorithm. arXiv preprint arXiv:1411.4028, 2014.

[29] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love,
A. Aspuru-Guzik, and J. L. O’brien. A variational eigenvalue solver on a photonic
quantum processor. Nature communications, 5:4213, 2014.

[30] Aniruddha Bapat and Stephen Jordan. Bang-bang control as a design principle
for classical and quantum optimization algorithms. Quantum Info. Comput.,
19(5–6):424–446, May 2019.

[31] Lucas T. Brady, Christopher L. Baldwin, Aniruddha Bapat, Yaroslav Kharkov,
and Alexey V. Gorshkov. Optimal protocols in quantum annealing and quantum
approximate optimization algorithm problems. Phys. Rev. Lett., 126:070505, Feb
2021.

272

[32] G Pagano, P W Hess, H B Kaplan, W L Tan, P Richerme, P Becker, A Kyprianidis,
J Zhang, E Birckelbaw, M R Hernandez, Y Wu, and C Monroe. Cryogenic trapped-
ion system for large scale quantum simulation. Quantum Science and Technology,
4(1):014004, 2019.

[33] M. B. Hastings. Classical and Quantum Bounded Depth Approximation
Algorithms. arXiv:1905.07047, May 2019.

[34] Aniruddha Bapat and Stephen P. Jordan. Approximate optimization of the maxcut
problem with a local spin algorithm. Phys. Rev. A, 103:052413, May 2021.

[35] Rodney Van Meter and Kohei M. Itoh. Fast Quantum Modular Exponentiation.
Phys. Rev. A, 71(5):052320, 2005.

[36] Rodney Van Meter, W. J. Munro, Kae Nemoto, and Kohei M. Itoh. Arithmetic on
a distributed-memory quantum multicomputer. ACM J. Emerg. Technol. Comput.
Syst., 3(4):1–23, 2008.

[37] Muhammad Ahsan and Jungsang Kim. Optimization of Quantum Computer
Architecture Using a Resource-Performance Simulator. In 2015 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 1108–1113.
IEEE Conference Publications, 2015.

[38] T.S. Metodi, D.D. Thaker, and A.W. Cross. A Quantum Logic Array
Microarchitecture: Scalable Quantum Data Movement and Computation. In 38th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05),
pages 305–318. IEEE, 2005.

[39] L.-M. Duan and C. Monroe. Colloquium: Quantum networks with trapped ions.
Rev. Mod. Phys., 82:1209–1224, Apr 2010.

[40] M H Devoret and R J Schoelkopf. Superconducting Circuits for Quantum
Information: An Outlook. Science, 339(6124):1169–74, 2013.

[41] Philipp Kurpiers, Paul Magnard, Theo Walter, Baptiste Royer, Marek Pechal,
Johannes Heinsoo, Yves Salathé, Abdulkadir Akin, Simon Storz, J-C Besse, et al.
Deterministic quantum state transfer and remote entanglement using microwave
photons. Nature, 558(7709):264–267, 2018.

[42] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring Network
Structure, Dynamics, and Function Using NetworkX. In Gaël Varoquaux, Travis
Vaught, and Jarrod Millman, editors, Proceedings of the 7th Python in Science
Conference, pages 11–15, Pasadena, CA USA, 2008.

[43] L. Barrière, C. Dalfó, M. A. Fiol, and M. Mitjana. The generalized hierarchical
product of graphs. Discrete Mathematics, 309(12):3871–3881, June 2009.

[44] C.D. Godsil and B.D. McKay. A new graph product and its spectrum. Bulletin of
the Australian Mathematical Society, 18(1):21–28, 1978.

273

[45] J. J. Bollinger, Wayne M. Itano, D. J. Wineland, and D. J. Heinzen. Optimal
frequency measurements with maximally correlated states. Phys. Rev. A,
54(6):R4649–R4652, 1996.

[46] Zachary Eldredge, Michael Foss-Feig, Jonathan A. Gross, S. L. Rolston, and
Alexey V. Gorshkov. Optimal and secure measurement protocols for quantum
sensor networks. Phys. Rev. A, 97:042337, Apr 2018.

[47] Zachary Eldredge, Zhe-Xuan Gong, Jeremy T. Young, Ali Hamed Moosavian,
Michael Foss-Feig, and Alexey V. Gorshkov. Fast Quantum State Transfer and
Entanglement Renormalization Using Long-Range Interactions. Phys. Rev. Lett.,
119(17):170503, 2017.

[48] S. Bravyi, M. B. Hastings, and F. Verstraete. Lieb-Robinson Bounds and the
Generation of Correlations and Topological Quantum Order. Phys. Rev. Lett.,
97(5):050401, 2006.

[49] Gregory Bentsen, Yingfei Gu, and Andrew Lucas. Fast scrambling on sparse
graphs. Proceedings of the National Academy of Sciences, 116(14):6689–6694,
2019.

[50] Martı́ Cuquet and John Calsamiglia. Growth of Graph States in Quantum
Networks. Phys. Rev. A, 86(4):042304, 2012.

[51] Antonio Aćin, J. Ignacio Cirac, and Maciej Lewenstein. Entanglement Percolation
in Quantum Networks. Nat. Phys., 3(4):256–259, 2007.

[52] S Perseguers, G J Lapeyre, D Cavalcanti, M Lewenstein, and A Acı́n. Distribution
of entanglement in large-scale quantum networks. Rep. Prog. Phys., 76(9):096001,
2013.

[53] K. Kieling, T. Rudolph, and J. Eisert. Percolation, Renormalization, and Quantum
Computing with Nondeterministic Gates. Phys. Rev. Lett., 99(13):130501, 2007.

[54] Martı́ Cuquet and John Calsamiglia. Entanglement Percolation in Quantum
Complex Networks. Phys. Rev. Lett., 103(24):240503, 2009.

[55] Martı́ Cuquet and John Calsamiglia. Limited-Path-Length Entanglement
Percolation in Quantum Complex Networks. Phys. Rev. A, 83(3):032319, 2011.

[56] Yang Wang, D. Chakrabarti, Chenxi Wang, and C. Faloutsos. Epidemic Spreading
in Real Networks: An Eigenvalue Viewpoint. In 22nd International Symposium
on Reliable Distributed Systems, 2003. Proceedings., pages 25–34. IEEE Comput.
Soc, 2003.

[57] Duncan J. Watts and Steven H. Strogatz. Collective Dynamics of ’small World’
Networks. Nature, 393(6684):440–442, 1998.

274

[58] Albert-László Barabási and Réka Albert. Emergence of Scaling in Random
Networks. Science, 286(5439):509–512, 1999.

[59] Réka Albert and Albert-László Barabási. Statistical Mechanics of Complex
Networks. Rev. Mod. Phys., 74(1):47–97, 2002.

[60] S. Perseguers, M. Lewenstein, A. Aćin, and J. I. Cirac. Quantum Random
Networks. Nat. Phys., 6(7):539–543, 2010.

[61] C. Di Franco and D. Ballester. Optimal Path for a Quantum Teleportation Protocol
in Entangled Networks. Phys. Rev. A, 85(1):010303, 2012.

[62] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller. Quantum Repeaters: The Role
of Imperfect Local Operations in Quantum Communication. Phys. Rev. Lett.,
81(26):5932–5935, 1998.

[63] Frank Harary. The number of linear, directed, rooted, and connected graphs. Trans.
Amer. Math. Soc., 78:445–463, 1955.

[64] Mikhail Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces.
Modern Birkhäuser Classics. Birkhäuser Basel, 2007.

[65] Wei Chen, Wenjie Fang, Guangda Hu, and Michael W. Mahoney. On the
Hyperbolicity of Small-World and Treelike Random Graphs. Internet Math.,
9(4):434–491, 2013.

[66] Poonsuk Lohsoonthorn. Hyperbolic Geometry of Networks. PhD Thesis,
University of Southern California, Los Angeles, CA, USA, 2003.

[67] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and
Marián Boguñá. Hyperbolic Geometry of Complex Networks. Phys. Rev. E,
82(3):036106, 2010.

[68] Fabien de Montgolfier, Mauricio Soto, and Laurent Viennot. Treewidth and
Hyperbolicity of the Internet. In Proceedings of the 2011 IEEE 10th International
Symposium on Network Computing and Applications, NCA ’11, pages 25–32,
Washington, DC, USA, 2011. IEEE Computer Society.

[69] Marián Boguñá, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the
Internet with Hyperbolic Mapping. Nat. Commun., 1:62, 2010.

[70] Alicia J Kollár, Mattias Fitzpatrick, and Andrew A Houck. Hyperbolic lattices in
circuit quantum electrodynamics. Nature, 571(7763):45–50, 2019.

[71] Sang-il Oum. Rank-Width and Vertex-Minors. J. Comb. Theory Ser. B, 95(1):79–
100, 2005.

[72] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear Time Solvable Optimization
Problems on Graphs of Bounded Clique Width. pages 1–16. Springer, Berlin,
Heidelberg, 1998.

275

[73] Charles E. Leiserson. Fat-trees: Universal networks for hardware-efficient
supercomputing. IEEE Trans. Comput., C-34(10):892–901, 1985.

[74] Michael William Newman. The Laplacian Spectrum of Graphs. Master’s Thesis,
University of Manitoba, Winnipeg, Canada, 2000.

[75] Bojan Mohar. The Laplacian Spectrum of Graphs. In Graph Theory,
Combinatorics, and Applications, pages 871–898. Wiley, 1991.

[76] Fan R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

[77] Donny Cheung, Dmitri Maslov, and Simone Severini. Translation Techniques
Between Quantum Circuit Architectures. In Workshop on Quantum Information
Processing, 2007.

[78] Norbert M. Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline
Figgatt, Kevin A. Landsman, Kenneth Wright, and Christopher Monroe.
Experimental comparison of two quantum computing architectures. Proceedings
of the National Academy of Sciences, 114(13):3305–3310, 3 2017.

[79] Robert S. Pindyck and Daniel L. Rubinfeld. Microeconomics. Pearson, 2013.

[80] Zoltán Füredi. Graphs of Diameter 3 with the Minimum Number of Edges. Graphs
Comb., 6(4):333–337, 1990.

[81] A. J. Hoffman and R. R. Singleton. On Moore Graphs with Diameters 2 and 3.
IBM J. Res. Dev., 4(5):497–504, 1960.

[82] Mirka Miller and Jozef Sirán. Moore graphs and beyond: A survey of the
degree/diameter problem. Electron. J. Comb., 1000:DS14–Dec, 2005.

[83] Guillermo Pineda-Villavicencio and David R. Wood. The degree-diameter problem
for sparse graph classes. Electron. J. Comb., 22(2):2.46, 2015.

[84] Zachary Eldredge et al. unitary-modular. https://github.com/
zeldredge/unitary-modular. GitHub repository.

[85] D. Maslov, S. M. Falconer, and M. Mosca. Quantum circuit placement. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
27(4):752–763, 2008.

[86] M. Pedram and A. Shafaei. Layout optimization for quantum circuits with linear
nearest neighbor architectures. IEEE Circuits and Systems Magazine, 16(2):62–74,
2016.

[87] Thomas Häner, Damian S Steiger, Krysta Svore, and Matthias Troyer. A software
methodology for compiling quantum programs. Quantum Science and Technology,
3(2):020501, feb 2018.

276

https://github.com/zeldredge/unitary-modular
https://github.com/zeldredge/unitary-modular

[88] Damian S. Steiger, Thomas Häner, and Matthias Troyer. ProjectQ: An open source
software framework for quantum computing. Quantum, 2:49, 2018.

[89] Konstantin Andreev and Harald Racke. Balanced graph partitioning. Theory of
Computing Systems, 39(6):929–939, October 2006.

[90] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[91] R. Kleinberg. Geographic Routing Using Hyperbolic Space. In IEEE INFOCOM
2007, pages 1902–1909. IEEE, 2007.

[92] E. Jonckheere and P. Lohsoonthorn. Geometry of Network Security. In
Proceedings of the 2004 American Control Conference, volume 2, pages 976–981
vol.2, 2004.

[93] Victor Chepoi, Feodor F. Dragan, Bertrand Estellon, Michel Habib, Yann Vaxès,
and Yang Xiang. Additive Spanners and Distance and Routing Labeling Schemes
for Hyperbolic Graphs. Algorithmica, 62(3-4):713–732, 2012.

[94] Zachary Eldredge, Leo Zhou, Aniruddha Bapat, James R. Garrison, Abhinav
Deshpande, Frederic T. Chong, and Alexey V. Gorshkov. Entanglement bounds
on the performance of quantum computing architectures. Phys. Rev. Research,
2:033316, Aug 2020.

[95] A. G. Fowler, S. J. Devitt, and L. C. L. Hollenberg. Implementation of shor’s
algorithm on a linear nearest neighbour qubit array. Quantum Info. Comput.,
4(4):237–251, July 2004.

[96] Peter Høyer and Robert Špalek. Quantum fan-out is powerful. Theory of
Computing, 1(5):81–103, 2005.

[97] David P. DiVincenzo. The Physical Implementation of Quantum Computation.
Fortschr. Phys., 48(9-11):771–783, 2000.

[98] H. J. Kimble. The quantum internet. Nature, 453(7198):1023–1030, June 2008.

[99] R. Beals, S. Brierley, O. Gray, A. W. Harrow, S. Kutin, N. Linden, D. Shepherd,
and M. Stather. Efficient distributed quantum computing. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 469(2153), 2013.

[100] Sougato Bose. Quantum communication through spin chain dynamics: an
introductory overview. Contemp. Phys., 48(1):13–30, jan 2007.

[101] Elliott H. Lieb and Derek W. Robinson. The finite group velocity of quantum spin
systems. Communications in Mathematical Physics, 28:251–257, 1972.

[102] J. Eisert, M. Cramer, and M. B. Plenio. Colloquium: Area laws for the
entanglement entropy. Rev. Mod. Phys., 82(1):277–306, feb 2010.

277

[103] Jeongwan Haah, Matthew Hastings, Robin Kothari, and Guang Hao Low. Quantum
algorithm for simulating real time evolution of lattice hamiltonians. In 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS), pages 350–
360. IEEE, IEEE, October 2018.

[104] W. Dür, G. Vidal, J. I. Cirac, N. Linden, and S. Popescu. Entanglement capabilities
of nonlocal hamiltonians. Physical Review Letters, 87(13), September 2001.

[105] A. M. Childs, D. W. Leung, F. Verstraete, and G. Vidal. Asymptotic entanglement
capacity of the ising and anisotropic heisenberg interactions. Quantum Information
and Computation, 3(2):97–105, 2003.

[106] A. M. Childs, D. W. Leung, and G. Vidal. Reversible simulation of bipartite
product hamiltonians. IEEE Transactions on Information Theory, 50(6):1189–
1197, 2004.

[107] C. H. Bennett, A. W. Harrow, D. W. Leung, and J. A. Smolin. On the capacities
of bipartite hamiltonians and unitary gates. IEEE Transactions on Information
Theory, 49(8):1895–1911, July 2003.

[108] Sergey Bravyi. Upper bounds on entangling rates of bipartite Hamiltonians.
Physical Review A, 76(5), November 2007.

[109] Karel Van Acoleyen, Michaël Mariën, and Frank Verstraete. Entanglement Rates
and Area Laws. Physical Review Letters, 111(17), October 2013.

[110] Koenraad M. R. Audenaert. Quantum skew divergence. Journal of Mathematical
Physics, 55(11):112202, November 2014.

[111] Michaël Mariën, Koenraad M. R. Audenaert, Karel Van Acoleyen, and Frank
Verstraete. Entanglement rates and the stability of the area law for the entanglement
entropy. Communications in Mathematical Physics, 346(1):35–73, 2016.

[112] Sougato Bose. Quantum communication through an unmodulated spin chain. Phys.
Rev. Lett., 91(20), November 2003.

[113] Giulia Gualdi, Vojtech Kostak, Irene Marzoli, and Paolo Tombesi. Perfect state
transfer in long-range interacting spin chains. Phys. Rev. A, 78(2), August 2008.

[114] Matthias Christandl, Nilanjana Datta, Artur Ekert, and Andrew J. Landahl. Perfect
state transfer in quantum spin networks. Physical Review Letters, 92(18), May
2004.

[115] Matthias Christandl, Nilanjana Datta, Tony C. Dorlas, Artur Ekert, Alastair Kay,
and Andrew J. Landahl. Perfect transfer of arbitrary states in quantum spin
networks. Physical Review A, 71(3), March 2005.

[116] L. Campos Venuti, C. Degli Esposti Boschi, and M. Roncaglia. Qubit teleportation
and transfer across antiferromagnetic spin chains. Physical Review Letters, 99(6),
August 2007.

278

[117] Leonardo Banchi, Abolfazl Bayat, Paola Verrucchi, and Sougato Bose.
Nonperturbative entangling gates between distant qubits using uniform cold atom
chains. Physical Review Letters, 106(14), April 2011.

[118] N. Y. Yao, L. Jiang, A. V. Gorshkov, Z.-X. Gong, A. Zhai, L.-M. Duan, and M. D.
Lukin. Robust quantum state transfer in random unpolarized spin chains. Phys.
Rev. Lett., 106(4), jan 2011.

[119] C. Di Franco, M. Paternostro, and M. S. Kim. Perfect state transfer on a spin chain
without state initialization. Phys. Rev. Lett., 101(23), dec 2008.

[120] Claudio Albanese, Matthias Christandl, Nilanjana Datta, and Artur Ekert. Mirror
inversion of quantum states in linear registers. Physical Review Letters, 93(23),
November 2004.

[121] Tao Shi, Ying Li, Zhi Song, and Chang-Pu Sun. Quantum-state transfer via the
ferromagnetic chain in a spatially modulated field. Physical Review A, 71(3),
March 2005.

[122] Peter Karbach and Joachim Stolze. Spin chains as perfect quantum state mirrors.
Physical Review A, 72(3), 2005.

[123] Robert Raussendorf. Quantum computation via translation-invariant operations on
a chain of qubits. Physical Review A, 72(5), nov 2005.

[124] Joseph Fitzsimons and Jason Twamley. Globally controlled quantum wires for
perfect qubit transport, mirroring, and computing. Physical Review Letters, 97(9),
sep 2006.

[125] P. Kumar and S. Daraeizadeh. Parity-based mirror inversion for efficient quantum
state transfer and computation in nearest-neighbor arrays. Physical Review A,
91(4), April 2015.

[126] David T. Stephen, Hendrik Poulsen Nautrup, Juani Bermejo-Vega, Jens Eisert,
and Robert Raussendorf. Subsystem symmetries, quantum cellular automata, and
computational phases of quantum matter. Quantum, 3:142, may 2019.

[127] Trithep Devakul and Dominic J. Williamson. Universal quantum computation
using fractal symmetry-protected cluster phases. Physical Review A, 98(2), aug
2018.

[128] Robert Raussendorf, Cihan Okay, Dong-Sheng Wang, David T. Stephen, and
Hendrik Poulsen Nautrup. Computationally universal phase of quantum matter.
Physical Review Letters, 122(9), mar 2019.

[129] Morten Kjaergaard, Mollie E Schwartz, Jochen Braumüller, Philip Krantz, Joel I-J
Wang, Simon Gustavsson, and William D Oliver. Superconducting qubits: Current
state of play. Annual Review of Condensed Matter Physics, 11:369–395, 2020.

279

[130] C. H. Bennett, J. I. Cirac, M. S. Leifer, D. W. Leung, N. Linden, S. Popescu,
and G. Vidal. Optimal simulation of two-qubit hamiltonians using general local
operations. Physical Review A, 66(1), July 2002.

[131] G. Vidal, K. Hammerer, and J. I. Cirac. Interaction cost of nonlocal gates. Physical
Review Letters, 88(23):237902, 2002.

[132] Noga Alon, F. R. K. Chung, and R. L. Graham. Routing permutations on graphs
via matchings. SIAM Journal on Discrete Mathematics, 7(3):513–530, 5 1994.

[133] Norman Y Yao, Chris R Laumann, Alexey V Gorshkov, Hendrik Weimer, Liang
Jiang, J Ignacio Cirac, Peter Zoller, and Mikhail D Lukin. Topologically protected
quantum state transfer in a chiral spin liquid. Nature Communications, 4(1):1–8,
2013.

[134] Hong Yao and Steven A Kivelson. Exact chiral spin liquid with non-abelian
anyons. Physical Review Letters, 99(24):247203, 2007.

[135] Alexei Kitaev. Anyons in an exactly solved model and beyond. Annals of Physics,
321(1):2–111, 2006.

[136] Yu-An Chen. Exact bosonization in arbitrary dimensions. Physical Review
Research, 2(3):033527, 2020.

[137] Aniruddha Bapat, Andrew M. Childs, Dhruv Devulapalli, Alexey V. Gorshkov, and
Eddie Schoute. In preparation, 2021.

[138] Donald E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley,
2 edition, 1998.

[139] Roy Oste and Joris Van der Jeugt. Tridiagonal test matrices for eigenvalue
computations: Two-parameter extensions of the clement matrix. J. Comput. Appl.
Math., 314:30–39, apr 2017.

[140] Ole H Hald. Inverse eigenvalue problems for jacobi matrices. Linear Algebra and
Its Applications, 14(1):63–85, 1976.

[141] John Watrous. The Theory of Quantum Information. Cambridge University Press,
2018.

[142] D. W. Berry, A. M. Childs, and R. Kothari. Hamiltonian simulation with nearly
optimal dependence on all parameters. In 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pages 792–809, 10 2015.

[143] C. A. Fuchs and J. van de Graaf. Cryptographic distinguishability measures
for quantum-mechanical states. IEEE Transactions on Information Theory,
45(4):1216–1227, 1999.

[144] Doug McClure and Jay Gambetta. Quantum computation center opens, 2019.

280

[145] Mehdi Saeedi, Robert Wille, and Rolf Drechsler. Synthesis of quantum circuits
for linear nearest neighbor architectures. Quantum Information Processing,
10(3):355–377, 6 2011.

[146] Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. Optimization of quantum
circuits for interaction distance in linear nearest neighbor architectures. In
Proceedings of the 50th Annual Design Automation Conference, DAC ’13, pages
41:1–41:6, New York, NY, USA, 2013. ACM.

[147] Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. Qubit placement to
minimize communication overhead in 2d quantum architectures. In 2014 19th
Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 1 2014.

[148] Aaron Lye, Robert Wille, and Rolf Drechsler. Determining the minimal number
of swap gates for multi-dimensional nearest neighbor quantum circuits. In The
20th Asia and South Pacific Design Automation Conference, pages 178–183. IEEE,
2015.

[149] Prakash Murali, Jonathan M. Baker, Ali Javadi Abhari, Frederic T. Chong, and
Margaret Martonosi. Noise-adaptive compiler mappings for noisy intermediate-
scale quantum computers. In Iris Bahar, Maurice Herlihy, Emmett Witchel, and
Alvin R. Lebeck, editors, ASPLOS ’19, pages 1015–1029. The Association for
Computing Machinery, 2019.

[150] Alwin Zulehner and Robert Wille. Compiling SU(4) quantum circuits to IBM QX
architectures. In Proceedings of the 24th Asia and South Pacific Design Automation
Conference on - ASPDAC '19. ACM Press, 2019.

[151] Indranil Banerjee and Dana Richards. New results on routing via matchings on
graphs. In Ralf Klasing and Marc Zeitoun, editors, Fundamentals of Computation
Theory, number 10472 in Lecture Notes in Computer Science, pages 69–81.
Springer, 2017.

[152] Louxin Zhang. Optimal bounds for matching routing on trees. SIAM Journal on
Discrete Mathematics, 12(1):64–77, 1 1999.

[153] S. Lakshmivarahan, Sudarshan K. Dhall, and Leslie L. Miller. Parallel sorting
algorithms. volume 23 of Advances in Computers, pages 321–323. Elsevier, 1984.

[154] V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by reversals. In
Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science, pages
148–157, 1993.

[155] J. Kececioglu and D. Sankoff. Exact and approximation algorithms for sorting by
reversals, with application to genome rearrangement. Algorithmica, 13(1-2):180–
210, February 1995.

281

[156] Michael A. Bender, Dongdong Ge, Simai He, Haodong Hu, Ron Y. Pinter, Steven
Skiena, and Firas Swidan. Improved bounds on sorting by length-weighted
reversals. Journal of Computer and System Sciences, 74(5):744 – 774, 2008.

[157] Ron Pinter and Steven Skiena. Genomic sorting with length-weighted reversals.
Genome informatics. International Conference on Genome Informatics, 13:103–
11, 01 2002.

[158] Thach Cam Nguyen, Hieu Trung Ngo, and Nguyen Bao Nguyen. Sorting by
restricted-length-weighted reversals. Genomics, Proteomics & Bioinformatics,
3(2):120 – 127, 2005.

[159] Samuel King, Eddie Schoute, and Hrishee Shastri. reversal-sort. https:
//gitlab.umiacs.umd.edu/amchilds/reversal-sort.

[160] M. Schwartz and P. O. Vontobel. Improved lower bounds on the size of balls over
permutations with the infinity metric. IEEE Transactions on Information Theory,
63(10):6227–6239, 2017.

[161] Torleiv Kløve. Spheres of permutations under the infinity norm- permutations with
limited displacement, 2008.

[162] I. Tamo and M. Schwartz. Correcting limited-magnitude errors in the rank-
modulation scheme. IEEE Transactions on Information Theory, 56(6):2551–2560,
2010.

[163] Herbert Robbins. A remark on stirling’s formula. The American Mathematical
Monthly, 62(1):26–29, 1955.

[164] T. Hogg and D. Portnov. Quantum optimization. Information Sciences, 128(3-
4):181–197, 2000.

[165] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor G. Rieffel, Davide
Venturelli, and Rupak Biswas. From the quantum approximate optimization
algorithm to a quantum alternating operator ansatz. Algorithms, 12(2), 2019.

[166] E. Farhi and H. Neven. Classification with quantum neural networks on near term
processors. arXiv preprint arXiv:1802.06002, 2018.

[167] I. H. Kim and B. Swingle. Robust entanglement renormalization on a noisy
quantum computer. arXiv preprint arXiv:1711.07500, 2017.

[168] D. Wecker, M. B. Hastings, and M. Troyer. Training a quantum optimizer. Physical
Review A, 94(2):022309, 2016.

[169] G. Verdon, J. Pye, and M. Broughton. A universal training algorithm for quantum
deep learning. arXiv preprint arXiv:1806.09729, 2018.

[170] E. Farhi, J. Goldstone, and S. Gutmann. Quantum adiabatic evolution algorithms
versus simulated annealing. arXiv preprint quant-ph/0201031, 2002.

282

https://gitlab.umiacs.umd.edu/amchilds/reversal-sort
https://gitlab.umiacs.umd.edu/amchilds/reversal-sort

[171] L. T. Brady and W. van Dam. Spectral-gap analysis for efficient tunneling in
quantum adiabatic optimization. Physical Review A, 94(3):032309, 2016.

[172] D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli. Convergence and finite-time
behavior of simulated annealing. Advances in applied probability, 18(3):747–771,
1986.

[173] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and
the bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-6(6):721–741, 1984.

[174] B. Hajek. Cooling schedules for optimal annealing. Mathematics of operations
research, 13(2):311–329, 1988.

[175] B. Gidas. Nonstationary markov chains and convergence of the annealing
algorithm. Journal of Statistical Physics, 39(1-2):73–131, 1985.

[176] S. Jansen, M.-B. Ruskai, and R. Seiler. Bounds for the adiabatic approximation
with applications to quantum computation. Journal of Mathematical Physics,
48(10):102111, 2007.

[177] A. Elgart and G. A. Hagedorn. A note on the switching adiabatic theorem. Journal
of Mathematical Physics, 53(10):102202, 2012.

[178] J. Roland and N. J. Cerf. Quantum search by local adiabatic evolution. Physical
Review A, 65(4):042308, 2002.

[179] R. D. Somma, D. Nagaj, and M. Kieferová. Quantum speedup by quantum
annealing. Physical review letters, 109(5):050501, 2012.

[180] R. Chakrabarti and H. Rabitz. Quantum control landscapes. International Reviews
in Physical Chemistry, 26(4):671–735, 2007.

[181] Armin Rahmani and Claudio Chamon. Optimal control for unitary preparation
of many-body states: Application to luttinger liquids. Physical review letters,
107(1):016402, 2011.

[182] M. Lapert, Y. Zhang, S. J. Glaser, and D. Sugny. Towards the time-optimal control
of dissipative spin-1/2 particles in nuclear magnetic resonance. Journal of Physics
B: Atomic, Molecular and Optical Physics, 44(15):154014, 2011.

[183] B. Bonnard, S. J. Glaser, and D. Sugny. A review of geometric optimal control
for quantum systems in nuclear magnetic resonance. Advances in Mathematical
Physics, 2012, 2012.

[184] L. Kong and E. Crosson. The performance of the quantum adiabatic
algorithm on spike hamiltonians. International Journal of Quantum Information,
15(02):1750011, 2017.

283

[185] B. W. Reichardt. The quantum adiabatic optimization algorithm and local
minima. In Proceedings of the Thirty-sixth Annual ACM Symposium on Theory
of Computing, STOC ’04, pages 502–510, New York, NY, USA, 2004. ACM.

[186] Elizabeth Crosson and Aram W. Harrow. Simulated quantum annealing can be
exponentially faster than classical simulated annealing. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS), pages 714–723, 2016.

[187] Jacob Bringewatt, William Dorland, Stephen P. Jordan, and Alan Mink. Diffusion
monte carlo approach versus adiabatic computation for local hamiltonians. Phys.
Rev. A, 97:022323, Feb 2018.

[188] Matthew B. Hastings. Obstructions to classically simulating the quantum adiabatic
algorithm. Quantum Info. Comput., 13(11–12):1038–1076, November 2013.

[189] P. Richerme, C. Senko, J. Smith, A. Lee, S. Korenblit, and C. Monroe.
Experimental performance of a quantum simulator: Optimizing adiabatic evolution
and identifying many-body ground states. Phys. Rev. A, 88:012334, Jul 2013.

[190] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A.
Muschik, P. Silvi, R. Blatt, C. F. Roos, and P. Zoller. Self-verifying variational
quantum simulation of lattice models. Nature, 569(7756):355–360, 2019.

[191] Edward Farhi and Aram W Harrow. Quantum supremacy through the quantum
approximate optimization algorithm. arXiv:1602.07674, 2016.

[192] Seth Lloyd. Quantum approximate optimization is computationally universal.
arXiv e-prints, page arXiv:1812.11075, Dec 2018.

[193] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79,
August 2018.

[194] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D.
Lukin. Quantum approximate optimization algorithm: Performance, mechanism,
and implementation on near-term devices. Phys. Rev. X, 10:021067, Jun 2020.

[195] Zhang Jiang, Eleanor G. Rieffel, and Zhihui Wang. Near-optimal quantum circuit
for grover’s unstructured search using a transverse field. Physical Review A, 95(6),
Jun 2017.

[196] Zhihui Wang, Stuart Hadfield, Zhang Jiang, and Eleanor G. Rieffel. Quantum
approximate optimization algorithm for maxcut: A fermionic view. Physical
Review A, 97(2), Feb 2018.

[197] Gavin E Crooks. Performance of the quantum approximate optimization algorithm
on the maximum cut problem. arXiv:1811.08419, 2018.

[198] Glen Bigan Mbeng, Rosario Fazio, and Giuseppe Santoro. Quantum annealing: A
journey through digitalization, control, and hybrid quantum variational schemes.
arXiv preprint arXiv:1906.08948, 2019.

284

[199] Wen Wei Ho and Timothy H. Hsieh. Efficient variational simulation of non-trivial
quantum states. SciPost Phys., 6:29, 2019.

[200] Wen Wei Ho, Cheryne Jonay, and Timothy H. Hsieh. Ultrafast State
Preparation via the Quantum Approximate Optimization Algorithm with Long
Range Interactions. arXiv:1810.04817, Oct 2018.

[201] Thomas Koffel, M. Lewenstein, and Luca Tagliacozzo. Entanglement entropy for
the long-range ising chain in a transverse field. Physical Review Letters, 109(26),
Dec 2012.

[202] K. Kim, M.-S. Chang, R. Islam, S. Korenblit, L.-M. Duan, and C. Monroe.
Entanglement and tunable spin-spin couplings between trapped ions using multiple
transverse modes. Physical Review Letters, 103(12), Sep 2009.

[203] D. Porras and J. I. Cirac. Effective Quantum Spin Systems with Trapped Ions.
Phys. Rev. Lett., 92:207901, May 2004.

[204] Daniel Jaschke, Michael L. Wall, and Lincoln D. Carr. Open source matrix product
states: Opening ways to simulate entangled many-body quantum systems in one
dimension. Computer Physics Communications, 225:59 – 91, 2018.

[205] D Dylewsky, JK Freericks, ML Wall, AM Rey, and M Foss-Feig. Nonperturbative
calculation of phonon effects on spin squeezing. Physical Review A, 93(1):013415,
2016.

[206] Stuart Hadfield. Quantum algorithms for scientific computing and approximate
optimization. arXiv:1805.03265, 2018.

[207] Matteo M. Wauters, Glen Bigan Mbeng, and Giuseppe E. Santoro. Polynomial
scaling of QAOA for ground-state preparation: Taming first-order phase
transitions. arXiv 2003.07419, 2020.

[208] Michael J. Bremner, Ashley Montanaro, and Dan J. Shepherd. Average-case
complexity versus approximate simulation of commuting quantum computations.
Phys. Rev. Lett., 117:080501, Aug 2016.

[209] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh Vazirani. On the
complexity and verification of quantum random circuit sampling. Nat. Phys.,
15(2):159–163, 2019.

[210] Sheng-Tao Wang and Lu-Ming Duan. Certification of Boson Sampling Devices
with Coarse-Grained Measurements. arXiv 1601.02627, Jan 2016.

[211] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus
Brink, Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational
quantum eigensolver for small molecules and quantum magnets. Nature,
549(7671):242–246, September 2017.

285

[212] Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas
Monz, Heng Shen, Petar Jurcevic, Ben P. Lanyon, Peter Love, Ryan Babbush,
Alán Aspuru-Guzik, Rainer Blatt, and Christian F. Roos. Quantum chemistry
calculations on a trapped-ion quantum simulator. Phys. Rev. X, 8:031022, Jul 2018.

[213] Yunseong Nam, Jwo-Sy Chen, Neal C Pisenti, Kenneth Wright, Conor Delaney,
Dmitri Maslov, Kenneth R Brown, Stewart Allen, Jason M Amini, Joel Apisdorf,
et al. Ground-state energy estimation of the water molecule on a trapped-ion
quantum computer. npj Quantum Information, 6(1):1–6, 2020.

[214] J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M. Block, B. Bloom,
S. Caldwell, N. Didier, E. Schuyler Fried, S. Hong, P. Karalekas, C. B. Osborn,
A. Papageorge, E. C. Peterson, G. Prawiroatmodjo, N. Rubin, Colm A. Ryan,
D. Scarabelli, M. Scheer, E. A. Sete, P. Sivarajah, Robert S. Smith, A. Staley,
N. Tezak, W. J. Zeng, A. Hudson, Blake R. Johnson, M. Reagor, M. P. da Silva,
and C. Rigetti. Unsupervised Machine Learning on a Hybrid Quantum Computer.
arXiv e-prints, page arXiv:1712.05771, Dec 2017.

[215] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew Lundgren,
and Daniel Preda. A quantum adiabatic evolution algorithm applied to random
instances of an NP-complete problem. Science, 292(5516):472–475, 2001.

[216] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Advances in quantum
metrology. Nature Photonics, 5:222, 03 2011.

[217] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors, Proceedings of a symposium on the
Complexity of Computer Computations, held March 20-22, 1972, at the IBM
Thomas J. Watson Research Center, Yorktown Heights, New York, USA, The IBM
Research Symposia Series, pages 85–103. Plenum Press, New York, 1972.

[218] Johan Håstad. Some optimal inapproximability results. Journal of the ACM
(JACM), 48(4):798–859, 2001.

[219] M. Jarret, S. P. Jordan, and B. Lackey. Adiabatic optimization versus diffusion
Monte Carlo methods. Phys. Rev. A, 94:042318, 2016.

[220] Boaz Barak, Ankur Moitra, Ryan O’Donnell, Prasad Raghavendra, Oded Regev,
David Steurer, Luca Trevisan, Aravindan Vijayaraghavan, David Witmer, and John
Wright. Beating the Random Assignment on Constraint Satisfaction Problems
of Bounded Degree. In Naveen Garg, Klaus Jansen, Anup Rao, and José D. P.
Rolim, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2015), volume 40 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 110–123, Dagstuhl,
Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

286

[221] Juho Hirvonen, Joel Rybicki, Stefan Schmid, and Jukka Suomela. Large cuts with
local algorithms on triangle-free graphs. The Electronic Journal of Combinatorics,
pages P4–21, 2017.

[222] A. Lucas. Ising formulations of many NP problems. Front. Physics, 2:5, 2014.

[223] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal
inapproximability results for max-cut and other 2-variable csps? SIAM J. Comput.,
37(1):319–357, April 2007.

[224] Samuel Burer, Renato DC Monteiro, and Yin Zhang. Rank-two relaxation
heuristics for max-cut and other binary quadratic programs. SIAM Journal on
Optimization, 12(2):503–521, 2002.

[225] Frauke Liers, Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi. Computing
Exact Ground States of Hard Ising Spin Glass Problems by Branch-and-Cut,
chapter 4, pages 47–69. John Wiley & Sons, Ltd, 2004.

[226] Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. Solving max-cut to
optimality by intersecting semidefinite and polyhedral relaxations. Mathematical
Programming, 121(2):307, 2010.

[227] Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto. Coherent
Ising machine based on degenerate optical parametric oscillators. Phys. Rev. A,
88:063853, 2013.

[228] S. Mandrà, Z. Zhu, W. Wang, A. Perdomo-Ortiz, and H. G. Katzgraber. Strengths
and weaknesses of weak-strong cluster problems: A detailed overview of state-of-
the-art classical heuristics versus quantum approaches. Phys. Rev. A, 94:022337,
2016.

[229] Angelika Wiegele. Binary Quadratic and Max Cut (Biq Mac) Library. http:
//biqmac.uni-klu.ac.at/biqmaclib.html, 2007.

[230] Francisco Barahona and Ali Ridha Mahjoub. On the cut polytope. Mathematical
programming, 36(2):157–173, 1986.

[231] Wenceslas Fernandez de la Vega and Claire Kenyon-Mathieu. Linear programming
relaxations of maxcut. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’07, page 53–61, USA, 2007. Society
for Industrial and Applied Mathematics.

[232] Michel X Goemans and David P Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM (JACM), 42(6):1115–1145, 1995.

[233] Stephen P. Jordan, Keith S. M. Lee, and John Preskill. Quantum algorithms for
quantum field theories. Science, 336(6085):1130–1133, 2012.

287

http://biqmac.uni-klu.ac.at/biqmaclib.html
http://biqmac.uni-klu.ac.at/biqmaclib.html

[234] Lucas T. Brady, Lucas Kocia, Przemyslaw Bienias, Aniruddha Bapat, Yaroslav
Kharkov, and Alexey V. Gorshkov. Behavior of analog quantum algorithms, 2021.

[235] Jaime Sevilla and C Jess Riedel. Forecasting timelines of quantum computing.
arXiv preprint arXiv:2009.05045, 2020.

[236] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate
Optimization Algorithm Applied to a Bounded Occurrence Constraint Problem.
arXiv:1412.6062, Dec 2014.

[237] David Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M.
Meekhof. Experimental issues in coherent quantum-state manipulation of trapped
atomic ions. J. Res. Natl. Inst. Stand. Technol., 103:259–328, 1998.

[238] S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and
C. Monroe. Manipulation and detection of a trapped yb+ hyperfine qubit. Phys.
Rev. A, 76:052314, Nov 2007.

[239] Kenneth R. Brown, Aram W. Harrow, and Isaac L. Chuang. Arbitrarily accurate
composite pulse sequences. Phys. Rev. A, 70:052318, Nov 2004.

[240] Anders Sørensen and Klaus Mølmer. Quantum computation with ions in thermal
motion. Phys. Rev. Lett., 82:1971–1974, Mar 1999.

[241] D. F. V. James. Quantum dynamics of cold trapped ions with application to
quantum computation. Applied Physics B, 66:181, 1998.

288

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Citations to Previously Published Work
	Introduction
	General remarks
	Quantum architectures
	Evaluating a quantum architecture
	Quantum routing

	Variational Algorithms

	Unitary entanglement construction in hierarchical networks
	Introduction
	Hierarchical Products of Graphs
	Background and Notation
	Hierarchical Product

	Graph Comparisons
	Graph Calculations
	Choosing Among Graphs

	Entangled State Construction
	Setup
	Analytical Results for Deterministic Entanglement Generation
	Numerical Results for Probabilistic Entanglement Generation

	Circuit Placement on Hierarchies
	Partitioning
	Rotation
	Results

	Conclusions and Outlook

	Nearly optimal time-independent reversal of a spin chain
	Proof and analysis of the protocol
	Time lower bound
	Discussion
	Time-dependent protocol for reversal
	Infinite family of Hamiltonians for state reversal
	Robustness of the protocol

	Routing using fast reversal
	Introduction
	Simple bounds on routing using reversals
	An algorithm for sparse permutations
	Paths
	General graphs

	Algorithms for routing on the path
	Worst-case bounds

	Average-case performance
	Conclusion
	Average routing time using only swaps
	Average routing time using TBS

	Bang-bang control as a design principle for classical and quantum optimization algorithms
	Summary of results
	Preliminaries
	Annealing-based algorithms
	Simulated annealing
	SA with linear update
	QAO

	Bang-bang algorithms
	Bang-bang simulated annealing (BBSA)
	QAOA

	Conditions for optimality of bang-bang control
	The problem instances
	Bush of implications
	Hamming ramp with spike

	Performance
	SA and QAO
	Bang-bang simulated annealing
	QAOA

	The control framework
	Bang-bang simulated annealing on the Spike
	Proof of Lemma 5.7.1

	Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator
	Quantum Hamiltonian optimization
	Combinatorial optimization

	Approximate optimization of the MaxCut problem with a local spin algorithm
	Spin problems
	Local Tensor framework
	Spin model instances
	LT as a discretized, imaginary-time Schrödinger evolution
	Hyperparameter optimization
	Dependence of lt dynamics on the hyperparameters
	Behavior for a small instance.
	Dynamics near steady-state.
	Optimal parameters by instance type.

	Comparison with Gurobi
	Comparison with gradient descent
	Discussion

	Conclusion
	Open problems
	Perspectives about the future

	 Appendices to Chapter 6
	Quantum Approximate Optimization Algorithm (QAOA)
	QAOA, p=1
	QAOA, p>1
	Convergence in N
	Scaling of in p, N
	Characteristic scale for

	Evidence for hardness of sampling from general QAOA circuits
	Generalized gap of a function
	Approximate sampling hardness

	Trapped-ion experimental systems
	State preparation
	Generating the Ising Hamiltonian
	Fitting Ising Couplings to Analytic Form
	State Detection
	Error sources

	Bibliography

