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Local tensor methods are a class of optimization algorithms introduced in [Hastings,
arXiv:1905.07047v2][1] as a classical analogue of the quantum approximate optimization algorithm
(QAOA). These algorithms treat the cost function as a Hamiltonian on spin degrees of freedom, and
simulate the relaxation of the system to a low energy configuration using local update rules on the
spins. Whereas the emphasis in [1] was on theoretical worst-case analysis, we here investigate the un-
derlying dynamics of the algorithm, and find that the local tensor method closely follows discretized,
imaginary-time dynamics of the system under the problem Hamiltonian. Then, we study practical
performance through benchmarking experiments on instances of the maxcut problem. Through
heuristic arguments we propose formulas for choosing the hyperparameters of the algorithm which
are found to be in good agreement with the optimal choices determined from experiment. We ob-
serve that the local tensor method is closely related to gradient descent on a relaxation of maxcut
to continuous variables, but consistently outperforms gradient descent in all instances tested. We
find that time to solution achieved by the local tensor method is highly uncorrelated with that
achieved by a widely used commercial optimization package; on some maxcut instances the local
tensor method beats the commercial solver in time to solution by up to two orders of magnitude
and vice-versa.

Binary unconstrained optimization, i.e., the max-
imization of an objective function on the configu-
ration space of binary variables, is an important
NP-hard optimization problem whose restrictions in-
clude several problems from Karp’s list of 21 NP-
complete problems [2]. Due to the hardness of the
problems, many solution approaches rely on find-
ing approximately optima in the shortest possible
time, or constructing algorithms that have an op-
timality guarantee but without guarantees on run-
time. Algorithms in the latter category are often
referred to as exact solvers, and include approaches
that use linear, quadratic, or semi-definite program-
ming (LP/QP/SDP) relaxations of the problem in-
stance with techniques to obtain optimality bounds
such as cutting planes, branch-and-bound, or Lan-
grangian dual-based techniques. While the design
of exact algorithms may be well-suited to theoreti-
cal analysis, the runtime scaling in instance size is
often poor.

In some cases, it is possible to design polynomial-
time algorithms with guarantees on the approxi-
mation ratio, i.e., the ratio of the optimum ob-
tained to the global maximum. These are, however,
ultimately limited by hardness results on achiev-
ing approximation ratios above a certain threshold
value [3].
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In the absence of runtime or optimality guar-
antees, problem-specific heuristics can nevertheless
perform better than expected, exhibiting superior
performance in runtime, optimality or both. An
important class of heuristics takes inspiration from
physical processes seen in nature, and those in this
category that mimic the evolution of quantum sys-
tems are known as quantum-inspired optimization
methods.

Quantum-inspired (or “dequantized”) algorithms
have arisen in recent years of out a rich interplay be-
tween physics and algorithms research in the context
of quantum computing. Thus, as notions of com-
plexity now find analogues in many-body systems,
so do quantum dynamics inform the design of quan-
tum and classical algorithms. In the area of classical
optimization, two quantum algorithms have gener-
ated considerable interest: quantum annealing and
the quantum approximate optimization algorithm
(QAOA). Promising developments in quantum an-
nealing have inspired classical heuristic algorithms
such as simulated quantum annealing [4] and sub-
stochastic monte carlo [5], both of which mimic the
evolution of the quantum state under an adiabati-
cally evolving Hamiltonian.

Recent results on the performance of shallow-
depth QAOA on the problem of max-e3-lin2 led
to improved approximations of corresponding clas-
sical algorithms for the same problem [6, 7]. More
recently, a new classical heuristic known as Local
Tensor (lt) was introduced in [1], taking inspira-
tion from QAOA and closely related to previously
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known classical heuristics for distributed comput-
ing [8]. It was shown in [1] that lt has average-
case performance better than single-layer QAOA
for triangle-free maxcut and max-k-lin2 by tun-
ing only one global hyperparameter, in contrast to
the two-parameter tuning required for QAOA. Cur-
rently, it is unknown whether lt may be useful as a
heuristic more broadly, and if so, how the hyperpa-
rameters should be set in practice. In this paper, we
address this question by implementing a version of
lt and benchmarking it on the problem of maxcut.
We find that on the instances studied, the perfor-
mance of lt can be considerably enhanced by hyper-
parameter tuning, and that it is possible to provide
good initial guesses on the hyperparameters as func-
tion of the instance description. Under such settings,
the performance of lt is comparable to the perfor-
mance of the commercially available solver, Gurobi.

Our setup is described in Sections I and II, fol-
lowed by a discussion of hyperparameter tuning
and the underlying physics of the algorithm in Sec-
tions IV to VI, respectively. Then, we provide a brief
description of the problem instances studied (Sec-
tion III), and compare the performance of tuned lt
with those of Gurobi (Section VII) and gradient de-
scent (Section VIII).

I SPIN PROBLEMS

We refer to binary unconstrained optimization prob-
lems on spin degrees of freedom si ∈ {−1, 1} as spin
problems. Most generally, one can express the objec-
tive function as a polynomial in the variables. Fur-
thermore, since higher powers of the binary variables
are trivial, the polynomial is guaranteed to be degree
at most one in each variable. The objective function
to be maximized can therefore be viewed (up to a
negative sign) as a Hamiltonian of a spin system, and
the optimization problem maps to sampling from the
ground state of the Hamiltonian. The cost Hamilto-
nian for a system of n spins with indices {1, 2, . . . , n}
can be written as

H =
∑
α

wα

∏
i∈α

si. (1)

Therefore, H is a sum of monomials, or clauses,
where a clause α is supported on the subset of spins
α ⊆ {1, . . . , n}. The sum is weighted by clause
weights wα. The problem can be fully specified as
a weighted hypergraph G = (V,E,W ), on vertices
V = {1, 2, . . . , n}, hyperedges E = {α, · · · }, and
clause weights W = {wα, . . .}.

A wide range of optimization problems be cast
as binary unconstrained maximization problems [9],
making this problem description very versatile. A
simple (and commonly studied) case is one where

the polynomial (1) is quadratic, i.e. |α| ≤ 2 for ev-
ery α. This case captures several interesting phys-
ical systems such as Ising spin glasses, as well as
a wide range of graph optimization problems. In
this work, we focus on a particular quadratic spin
problem, maxcut, defined in the following manner.
Given a weighted graph G = (V,E,W ), we define a
cut to be a partition of the vertices of the graph into
two sets. The weight of the cut (or simply the cut)
is then defined as the sum of weights of edges going
across the cut. Therefore, for any A ⊂ V , the cut is

F (A) :=
∑

i∈A,j∈Ā

wij . (2)

Then, given a graph G, maxcut asks for the largest
cut of the graph. To show that maxcut can be
written as a quadratic spin problem, we consider
the following encoding: Assign a spin si to vertex
i. Then, there is a one-to-one mapping between
bipartitions of V , (A, Ā), and spin configuration,
s = (s1, s2, . . . , sn), namely, by setting si = +1 if
i ∈ A and −1 otherwise. Edges ij that lie wholly in
either A or Ā do not count towards the cut, while
edges between A and Ā do. In terms of the spins,
edge ij will count towards the cut iff the spins si, sj
have opposite sign. Therefore, we may express the
maxcut Hamiltonian in the following manner:

Hmaxcut =
1

4

∑
i,j

wij · (sisj − 1). (3)

≡ 1

2
sT · J · s (4)

where Jij := wij/2 with zero diagonal terms, Jii =
0, and the last equivalence is an equality up to a con-
stant offset − 1

4

∑
i,j

wij . The cut size for any configu-

ration is the negation of the energy under Hmaxcut.
Notice that the ground state of Hmaxcut corresponds
to the largest cut in G. Since we are ultimately inter-
ested in the maximization problem, we will denote
the negation of the energy by E.

Despite its simple statement (and apparent sim-
ilarity to the polynomial-time solvable problem of
mincut), maxcut is known to be NP-hard [2]. In
fact, assuming the unique games conjecture holds,
approximating maxcut to within a fraction 0.878..
is NP-hard. This is also the best known perfor-
mance guarantee, achieved by the exact classical al-
gorithm due to Goemans and Williamson (GW) on
maxcut with non-negative weights. Custom solvers
for maxcut that that improve on practical perfor-
mance while sometimes preserving optimality are
known [10–12].
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maxcut is a well-studied problem and often used
as a benchmark for new classical, quantum, and
quantum-inspired solvers. Benchmarking of certain
quantum-inspired optimization methods such as the
coherent Ising machine [13] and the unified frame-
work for optimization or UFO (see, e.g., [14]) has
yielded promising results. In the following section,
we discuss the lt heuristic framework and set up our
implementation of the algorithm.

II LOCAL TENSOR FRAMEWORK

Before describing our implementation, we review the
local tensor (lt) algorithm framework laid out in [1].
The lt framework provides a general prescription for
a class of local algorithms for the optimization of a
Hamiltonian on spin variables. In a local algorithm,
the state (e.g., a spin configuration) is encoded into
the nodes of a graph, and the update rule at ev-
ery node is local in the graph structure, depending
only on nodes that are at most a bounded distance
away. Local state updates therefore require infor-
mation transfer among small neighborhoods and not
the entire graph. If the graph has bounded degree,
this can provide polynomial savings in the running
cost of the algorithm. Additional speedup can be
obtained in a true distributed model of computing
where each node is an individual processor, and com-
munication among nodes is slow compared to the
internal operations of each processor.

lt is a local algorithm framework for optimiza-
tion problems on spin degrees of freedom (such as
maxcut). In lt, we first relax the domain of every
spin variable from the binary set {−1, 1} to a con-
tinuous superset such as the real interval [−1, 1]. By
convention, we denote soft spins (i.e. those in the
continuous domain) by letters u, v, etc. and hard
spins by letters r, s, etc. Then, lt simulates dynam-
ics of a soft spin vector v in discrete time steps, and,
at the end of a total number of steps p, retrieves a
hard spin configuration s from the final state via a
rounding procedure applied to the soft spins. There
is considerable flexibility in this setup, and for ease
of study, we construct a specific instance of lt here.

Suppose we are given a maxcut instance whose
corresponding Hamiltonian (as in (4)) is H. Denote
the state of spin i at time t by vi,t, and the full
state vector by vt = (v1,t, v2,t, . . . , vN,t). Then, we
perform the following steps in order, simultaneously
for all spins i = 1, . . . , N .

1. Initialize all spins uniformly at random, vi,0 ∈
[−1, 1].

2. For t = 0, 1, . . . , p − 1, update vi,t 7→ vi,t+1 as
follows:

(a) vi,t.5 = vi,t + cFi,t where Fi,t :=
−∂H/∂vi,t and c is a real constant.

(b) vi,t+1 = tanh(βvi,t.5), where β is a posi-
tive constant.

3. After p rounds, round each spin to its sign,
vi,p 7→ s∗i = sgn (vi,p) ∈ {−1, 1}. Return s∗i .

The final configuration s∗ is a feasible solution can-
didate. As there the initial configuration v0 is sam-
pled at random, an outer loop carries out several
independent runs of the algorithm and selects the
best solution.

For an instance of size n, the domain of feasi-
ble solutions corresponds to the vertices of an n-
dimensional hypercube. The relaxation in lt ex-
tends the domain to the full hypercube, which allows
for small, incremental updates and a well-behaved
cost function, at the cost of making the search space
infinite. However, the rounding step at the end of
the algorithm offsets this drawback in the form of
a lenient rounding rule: Return the nearest vertex
of the hypercube. Therefore, the final state of the
graph is only required to lie in the correct quadrant
(or 2n-ant, to be precise) in order to produce the
optimal solution.

The spin update sequence is carried out for a total
of p rounds, each consisting of two steps. The force
Fi = ∂H/∂vi, calculated for each spin, displaces the
spin by an amount proportional to it. We refer to
the constant of proportionality c as the response.
Next, we apply the nonlinear function tanh(βv) to
the spin, with a rescaling factor β which we will call
the inverse temperature. This terminology is moti-
vated by analogy to classical thermodynamics. As
discussed in the next section, the soft spin v can be
inferred as the expectation of an ensemble of spin
configurations. When β is small, the expected value
v is close to zero (i.e., random), while for large β
the spins are “frozen” (expected value close to ±1).
The number of rounds p, response c, and the inverse
temperature β form the hyperparameters of the al-
gorithm, which must be fixed (ideally by optimiza-
tion) before the algorithm is run on an instance. In
theory, the factors c, β can also be made to vary by
round under a predetermined or adaptive schedule,
in a manner similar to simulated annealing. Here,
however, we will consider them to be constant in
time.

III SPIN MODEL INSTANCES

In order to test the dynamics and the performance
of lt, we choose one of several online repositories
of maxcut instances, the “Biq Mac” library [15].
Each instance therein is a random graph with edge
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weights drawn from a particular probability distri-
bution. In addition to the weight distribution, the
instances is parameterized by the number of vari-

ables n and edge density d (i.e. the expected num-
ber of non-zero weight edges). The instance data is
tabulated in Table I.

Instance type Tag Weight distribution Instance size (n) Clause density (d)

g05_n g05 wij ∈ {0, 1} 60, 80, 100 0.5
pm1s_n pm1s wij ∈ {−1, 0, 1} 80, 100 0.1
pm1d_n pm1d wij ∈ {−1, 0, 1} 80, 100 0.5
wd_n w wij ∈ [−10, 10] 100 0.1, 0.5, 0.9
pwd_n pw wij ∈ [0, 10] 100 0.1, 0.5, 0.9

ising2.5-n ising2.5 wij ∝ ϵij
|j−i|2.5 , ϵij ∼ N (0, 1) 100, 150, 200, 250, 300 –

ising3.0-n ising2.5 wij ∝ ϵij
|j−i|3.5 , ϵij ∼ N (0, 1) 100, 150, 200, 250, 300 –

t2gL torus 2-dim. toroidal grid, w⟨ij⟩ ∈ {−1, 1} L2, L = 5, 6, 7 4
n−1

t3gL 3-dim. toroidal grid, w⟨ij⟩ ∈ {−1, 1} L3, L = 5, 6, 7 6
n−1

TABLE I. The benchmarking instances. Each instance is a random graph on n vertices whose edge weights are
chosen from the given distribution. The first column specifies the formatting of instance names, while the second
column provides a shorter tag for all instances of a given type. In the case of the w instances, we sometimes group
the instance type w by clause density d, in which case the instances are tagged as wd, where d = 0.1, 0.5, 0.9. The
instance types g05, pm1s, pm1d, w, and pw are random graphs on n vertices with clause density d, where edge weights
are drawn from the distrubtion in column 3. The ising instances are a 1-dimensional Ising model with long-ranged
interactions falling off as a power (2.5 or 3.0) of the inter-spin distance, with a numerator sampled from the normal
distribution. The torus instances are periodic, D-dimensional (D = 2, 3) spin lattices with random couplings ±1
along the edges of the lattice (denoted by ⟨ij⟩ for two neighboring vertices i, j).

IV LT AS A DISCRETIZED,
IMAGINARY-TIME SCHRÖDINGER

EVOLUTION

lt describes a particular discrete-time evolution of a
spin system under a Hamiltonian H. In this section,
we provide a physical underpinning to these dynam-
ics by showing that evolution under lt is closely re-
lated to imaginary-time Schrödinger evolution under
H.

Given any initial state |ψ〉 and Hamiltonian H,
time-evolution of |ψ〉 under H is given by the
Schrödinger equation d|ψ〉/dt = −iH|ψ〉. The evo-
lution applies a phase to the eigenstates of H pro-
portional to the energy of the state times time, so
that low-energy states rotate slowly while highly ex-
cited states rotate fast. An analytical tool often em-
ployed to access the low-energy spectrum of H is
that of analytic continuation to imaginary time. In
this, one replaces the time by an imaginary time pa-
rameter τ := it, and the (unnormalized) imaginary
time Schrödinger equation reads

˙|ψ〉 ≡ d|ψ〉/dτ = −H|ψ〉 . (5)

The formal solution to this equation is |ψ(τ)〉 =
e−Hτ |ψ(0)〉. Note that |ψ(τ)〉 is unnormalized, but
we keep track of the normalization N (|ψ(τ)〉) ≡

N (τ) :=
√

〈ψ(τ)|ψ(τ)〉. In the limit τ → ∞, and as-
suming that the ground state ofH is non-degenerate,
the exponential e−τH suppresses contributions from
all but the lowest-energy state |ψ0〉 of H, which im-
plies that limτ→∞ |ψ(τ)〉 = |ψ0〉.

The normalization N (τ) has τ -dependence

Ṅ =
1

2
√

〈ψ|ψ〉
·
(
〈ψ̇|ψ〉+ 〈ψ|ψ̇〉

)
(6)

= −〈H〉
N

(7)

where 〈H〉 := 〈ψ|H|ψ〉 is the unnormalized expecta-
tion value of operator H. The normalized expecta-
tion value is given by 〈〈H〉〉 := 〈H〉/N 2.

Next, let H be a Hamiltonian acting on n qubits
that is diagonal in the Z basis. Any state |ψ〉 in this
Hilbert space can be mapped to a vector of normal-
ized expectation values of the Pauli operators Zi,
where the index i runs over all spins:

|ψ(τ)〉 7→ (〈〈Z1〉〉, 〈〈Z2〉〉, . . . , 〈〈Zn〉〉)
=: (v1, v2, . . . , vn) ,

where vi ∈ [−1, 1] is the classical spin variable that
tracks the normalized expectation of Zi. The imag-
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inary time-evolution of the spins is given by

v̇i =
d

dτ

(
〈Z1〉
N 2

)
(8)

=
−2Ṅ
N 3

〈Zi〉+
1

N 2

d

dτ
〈ψ|Zi|ψ〉 (9)

= 2vi〈〈H〉〉 − 〈〈HZi + ZiH〉〉 . (10)

This is essentially an imaginary-time analogue of the
Ehrenfest theorem. Since Pauli operators Zi square
to the identity, a diagonal Hamiltonian H can always
be written as

H = RiZi + Si , (11)

for every site i, for some operators Ri, Si that are not
supported on site i. Then, HZi = ZiH = Ri+SiZi.
Next, we make a mean-field assumption, 〈〈HīZi〉〉 ≈
〈〈Hī〉〉 · 〈〈Zi〉〉, where Hī is any local operator not
supported on site i. Then, it follows that 〈〈HZi〉〉 ≈
〈〈Ri〉〉+ vi · 〈〈Si〉〉, and 〈〈H〉〉 ≈ vi · 〈〈Ri〉〉+ 〈〈Si〉〉,
which gives

v̇i = 2
(
v2i · 〈〈Ri〉〉+ vi〈〈Si〉〉 − 〈〈Ri〉〉+ vi · 〈〈Si〉〉

)
(12)

= −2
(
1− v2i

)
· 〈〈Ri〉〉 . (13)

Next, we make a substitution ui := tanh−1 vi which
maps the real line onto the open interval (−1, 1).
Then, v̇i = 1 − sech2(ui)u̇i = (1 − v2i )u̇i, therefore
we can write

u̇i = −2〈〈Ri〉〉. (14)

Note now that the term 〈〈Ri〉〉 is precisely the nega-
tive expected value of the force on spin i, dH/dZi =
Ri = −Fi. Finally, an imaginary time evolution
discretized into small time steps δτ obeys (in mean
field)

vi(τ + δτ) = tanh
(
2δτFi + tanh−1 vi

)
. (15)

This equation bears similarity to the update rule
for lt. In fact, for vi sufficiently small and close to
steady state v∗i , we can expand the inverse tangent as
tanh−1 vi ≈ vi+v

3
i /3+ . . . ≈ −2v∗3i /3+vi ·(1+v∗2i ),

which looks linear with a modified slope. In princi-
ple, one could directly evolve the ui variables in time
as per Eq. (15). However, the vi have the advantage
of being bounded in [−1, 1], while the ui are un-
bounded and may suffer from issues of convergence.
The above analysis reveals a surprising connection
between lt and a discretized, mean-field imaginary
time evolution of classical spin expectation values.

Our analysis suggests a generalization of lt to
situations where the Hamiltonian is not diagonal

in the Z basis. In this context, we can repre-
sent each spin i as a 3D rotor ri = (xi, yi, zi) =
(〈〈Xi〉〉, 〈〈Yi〉〉, 〈〈Zi〉〉) of Pauli expectation values.
Since the Paulis square to the identity, a general
spin Hamiltonian H can always be written as

H = PiXi +QiYi +RiZi + Si , (16)

for every site i, where Pi, Qi, Ri, Si are some Her-
mitian operators that do not take support on site i.
Then, HiZi +ZiHi = 2Ri +2SiZi (and analogously
for Xi, Yi), and therefore

ẋi = −2(1− x2i ) · 〈〈Pi〉〉 , (17)

and similarly for the other coordinates.
More succinctly, if we define ρi :=(
tanh−1 xi, tanh

−1 yi, tanh
−1 zi

)
, then the imagi-

nary time evolution becomes

ρ̇i = −2Fi (18)

where Fi =
(
〈〈 dH

dXi
〉〉, 〈〈 dH

dYi
〉〉, 〈〈 dH

dZi
〉〉
)

=

(〈〈Pi〉〉, 〈〈Qi〉〉, 〈〈Ri〉〉). Then, we can imagine
a generalization of lt that discretizes the above
equation and simulates the evolution of a 3D rotor.
By “rounding” the expectation values of the final
state, we arrive at a product state estimate of
the ground state. The study of this generalized
algorithm will be left as a subject of future work.

V HYPERPARAMETER OPTIMIZATION

In order to talk about the performance of lt on any
given instance, we must first consider variations in
performance due to parameter setting and random-
ness. lt (as implemented here) is a family of algo-
rithms in the hyperparameters c, β, p. Moreover, for
fixed hyperparameters, any run of the algorithm has
randomness due to the choice of initial spin config-
uration. Therefore, the energy output at the end of
a single run of lt is a random variable dependent
on (c, β, p). The median final energy with fixed hy-
perparameters, however, is a determinate quantity,
which we denote Ec,β,p.

Ec,β,p = medianv0∈[−1,1]×nltc,β,p(v0) (19)

where, abusing notation, lt(v) denotes the output
energy of lt with input configuration v. By defini-
tion, half of the runs of LT are expected to produce
an optimum with energy lower than E, making the
median energy a useful figure of merit. The true me-
dian energy can be approximated in practice by the
median value of M independent runs of ltc,β,p,

median {E1, E2, . . . , EM} = Ẽ ≈ Ec,β,p (20)
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FIG. 1. Hyperparameter sweep for the instance
ising2.5-100 (seed 5555). We vary c over multiple or-
ders of magnitude, and plot the median (lower line) and
max (upper line) value of optimum found, normalized by
the global optimum, for several runs of the algorithm. It
can be seen that peak performance occurs when c ∼ c̄
(indicated by the vertical black line).

Since we ultimately wish to study the performance
of LT as a whole, the hyperparameters must be fixed
via a well-defined procedure that takes as input the
instance description and returns an (ideally optimal)
hyperparameter setting. The most rigorous criterion
is global optimization of the performance with re-
spect to each hyperparameter independently. This
is important, e.g. to avoid spurious trends in the
runtime scaling that arise from imperfect hyperop-
timization.

Since this is a computationally expensive task, we
focus first on gaining a better understanding of the
effect of the hyperparameter on the algorithm per-
formance and providing formulas to minimize the
resources needed for hyperparameter optimization.
Response c. The response c is the sensitivity of
the spins to force. Intuitively, setting c too large or
too small would make the spins too responsive to
displacement or frozen, respectively.

Therefore, we expect a regime for c values where
the spins are optimally sensitive to the force, and the
algorithm should also perform well in this regime.
Given a typical length of spins vi ∼ 1 and maximum

possible force on spin i, Fi ∼
N∑
j=1

|Jij |, a natural

guess for c is the inverse of the maximum force. We
define

c̄ = 2

⟨
N∑
j=1

|Jij |

⟩−1

i

(21)

where the brackets 〈·〉i denote a mean over all sites
in the graph. The factor of two is chosen purely

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

E/
E m

ax

median
max

FIG. 2. Hyperparameter sweep for the instance
ising2.5-100 (seed 5555). We plot the median (blue,
lower) and max (red, upper) performance as a function
of β (arb. units), for a fixed value of c ∼ c̄. The per-
formance is sensitive to order 1 variation in β, varying
from sub-random (cut fraction 0.5) to close to optimal
at β ≃ 0.7. This behavior is typical across all instances
studied.

empirically. As shown in Fig. 1, we find that c̄ is
indeed a natural scale for the response, and optimal
performance is typically found to be within an order
1 factor of c̄. Hereafter, we use a rescaled hyperpa-
rameter η := c/c̄.
Inverse temperature β. The β parameter scales
the value of the input to the tanh activation func-
tion. Intuitively, this enables mapping the displaced
spin to the linear response region of the tanh func-
tion for maximum sensitivity. This also ensures that
the spin stays of order 1 and therefore sensitive to
forces applied in subsequent rounds.

In Fig. 2, we show how the choice of β affects mean
and best-case performance for a particular instance.
The peaks suggest an optimal setting for the value
of β. We now make an educated guess for β as we
did for the response. For a fixed response η = c/c̄,
spin vi is displaced as vi → tanhβ(vi + cFi). Since
vi ≤ 1 for all i, the argument of the tanh function
must lie between [−β(1+ η),+β(1+ η)]. In order to
be maximally sensitive to displacement, we should
set β such that β(1 + η) ∼ O(1). This gives us a
functional dependence between β and η as

β =
a

1 + bη
, (22)

where we have introduced two fitting parameters
a, b. From the available instances, this relationship
can be checked by extracting the locus of optimal
settings for (η, β) and fitting them to the above func-
tional form. The results are shown in Fig. 3. The
quality of fits suggests that the functional depen-
dence given in Eq. (22) is accurate. In Fig. 4, we
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FIG. 3. Optimal β (arb. units) for a range of η values,
plotted for a torus instance. For each η, the optimal β
was found by grid search. The fit to the functional form
given in (22) is given by the smooth curve in the figure.
The curve profile and quality of fit seen here are typical
to all instances studied.
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FIG. 4. Clustering in the fit coefficients a, b in (22) for
different instances (units arbitrary). We see that the
fitting numerator a is close to 1 for most instances, while
b varies considerably. There is a reasonable degree of
clustering by instance type in b.

show how the coefficients a, b cluster for different
problems.

From this analysis, we see that given a problem
instance, the hyperparameters η, β can be guessed
with very little optimization, and tuned further, if
necessary, by local search in a range of order 1 in
each parameter.

Number of rounds p. The number of rounds p
required by the algorithm is dictated by the conver-
gence to steady state. Qualitatively, this may be
connected to the rate of information propagation in
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FIG. 5. Displacement between successive rounds as a
function of round number, for five arbitrarily chosen
spins from the random, 100-spin instance of type w05.
The log displacement approaches floating point preci-
sion after a short number of rounds, indicating that the
updates can be terminated early for the rounding step.

the graph, via quantities such as the girth. Unlike
for c, β however, a direct guess for p may be harder
to obtain.

Instead, we use a dynamic criterion to set the
value of p. Since lt is iterative and closely re-
lated to gradient descent, we expect that at some
point during the algorithm, the spin vector attains a
steady state such that all subsequent displacements
are smaller than a given threshold. As the final state
is determined by the quadrant containing the vector
and not the exact value of the vector, small displace-
ments have a small or no effect on the outcome.

In Fig. 5, we plot displacements between succes-
sive rounds of a subset of spins in a fixed instance.
It is seen that displacements quickly become small;
for instance, at p = 50, the displacements are of
order 10−4. This convergence in the spin values is
seen across all spins in a given instance, and all in-
stances studied. Therefore, once the displacement
of the state falls below a set threshold, we terminate
the algorithm. While this threshold is an additional
parameter, it can be set to be sufficiently smaller
than the size of the hypercube.

VI DEPENDENCE OF LT DYNAMICS
ON THE HYPERPARAMETERS

The implementation of lt studied here allows three
hyperparameters, namely, the number of rounds p,
the response to force c, and the “inverse tempera-
ture” β. We have discussed how to set these hyper-
parameters for a given maxcut instance, giving (in
the case of c, β) good initial approximations that de-
pend on the instance description, or (in the case of
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p) a dynamic criterion based on the convergence of
the state vector. Here we give a physical description
of the system dynamics and show, qualitatively, why
it is reasonable to expect such behaviors.
A Behavior for a small instance. For a small
instance on 5 spins, with real weights on every edge
chosen at random, we show the evolution of the full
spin configuration as a function of p. We see that
the system always finds the same steady-state con-
figuration regardless of initial state (some examples
shown in Fig. 6). We can therefore plot how the
steady state values of each spin change as a func-
tion of β and η, Fig. 7. What we see is that the
system undergoes a transition in both parameters,
from a phase with zero magnetization on each spin
to a phase where the spins have a preferred direction.
This is broadly consistent with the interpretation of
β and η as being analogous to inverse temperature
and interaction strength. At high temperetures or
low interaction strength, the spins prefer an unmag-
netized configuration while at low temperatures or
higher interaction, they find non-zero steady state
configurations that correspond to low-energy solu-
tions of the optimization problem. From a compu-
tational standpoint, the latter regime is of most in-
terest.
B Dynamics near steady-state. We will ana-
lyze the behaviour of lt near a steady state solu-
tion v∗ that satisfies v∗i = tanh [β (v∗i + cF ∗

i )] for all
spins i. Note that a steady state always exists: the
all-zero state v∗i = 0 is an example. More generally,
the transcendental equation for steady state, while
not guaranteed to have other solutions, can be ap-
proximated as a linear equation when v∗i � 1, which
has non-zero solutions for particular values of β, c.
Generically, we expect other steady solutions lying
within the hypercube, and find this to be true in our
numerics (e.g., Fig. 6).

Suppose, for a given run of the algorithm, the sys-
tem tends to a particular steady state v∗ at long
times, with the state at some finite time t given by
vt = v∗+δt, where |δi,t| � |v∗i |. Then, to first order
in the displacement, we have

vi,t+1 = tanh [β [(1+ cJ) · (v∗ + δt)]i] (23)
= tanh [β (v∗i + cF ∗

i ) + β [(1+ cJ) · δ]i] (24)
' tanh [β (v∗i + cF ∗

i )] (25)
+β [(1+ cJ) · δ]i sech

2 [β (v∗i + cF ∗
i )] (26)

= v∗i + β
(
1− v∗2i

)
[(1+ cJ) · δ]i (27)

where we used the steady-state condition, and
tanh′(x) = 1 − tanh2(x). Therefore, the displace-
ment at time t+ 1 is

δt+1 ' β
(
1− V ∗2) · (1+ cJ) · δt , (28)
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FIG. 6. Evolution of spins for a small instance (N =
5) for two randomly chosen initial configurations (units
arbitrary). Despite different initial states, the spins are
seen to approach the same steady state solution, up to an
overall sign. Larger instances may have multiple steady
states.

where we defined the diagonal matrix V ∗
ii = v∗i .

Therefore, the norm of the displacement vector close
to steady state is bounded as

|δt+1| ≲ |β| · ||
(
1− V ∗2) || · || (1+ cJ) || · |δt| . (29)

Since ||
(
1− V ∗2) || ≤ 1, and ||1+cJ || ≤ 1+|c|·||J ||,

it follows that

|δt+1| ≲ β · (1 + c||J ||) · |δt| , (30)

assuming c, β ≥ 0. Finally, consider the following
properties:

1. Since J has zero diagonal, then by the Ger-
shgorin circle theorem, all eigenvalues of J lie
within a disc of radius maxi

n∑
j=1

|Jij |.

2. If c = ηc̄, where c̄ = maxi
n∑

j=1

|Jij |, then 1 +

c||J || ≤ 1 + η.
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FIG. 7. Steady state spin configurations as a function
of β (top, η = 2) and η (bottom, β = 0.7) for the same
instance as Fig. 6 (units arbitrary). In both cases, the
system transitions from an “unmagnetized” phase for low
η, β to a “magnetized” phase at high η, β.

Therefore, for a choice β ≳ 1
1+η , we expect

|δt+1| ≲ |δt| (31)

giving the condition for dynamics converging to a
steady state. Three observations can be drawn from
this:

1. c̄ provides a natural unit for the response c.

2. For optimal convergence, we expect the depen-
dence between β and η = c/c̄ to be given by
β ' a/(1 + bη) for some parameters a, b.

3. Under the above circumstances, the trajec-
tory near steady state is stable and follows
an exponential convergence towards the steady
state solution. Therefore, the algorithm can be
“safely” terminated when the displacement is
under a certain threshold.

These three observations closely match our empir-
ically derived rules for good performance of lt. This
indicates that the steady state solutions may also
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FIG. 8. The obbjective function, normalized by the
global optimum, evaluated at the soft spin (y axis) and
the corresponding rounded spin obtained at the end of
an lt run, for several independent runs of the algorithm
on eight instances. Each instance is picked from a dif-
ferent instance type. The correlation between the two
quantities (given by R2 values in the legend) indicates
that better steady state soft spin configurations tend to
map to better feasible solutions.
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FIG. 9. Dependence of the fitting parameter b and the
spectral radius of the the normalized coupling matrix
c̄J (units arbitrary). A linear regression fits the data
with R2 = 92.9%, indicating a strong linear relationship
between the two quantities. Therefore, the spectral norm
of the coupling matrix can give a good estimate on the
fitting parameter b and hence β.

correlate with the locations of good feasible solu-
tions (given by the nearest hypercube vertex). This
can be seen in Fig. 8.

C Optimal parameters by instance type. In
fact, the quantity c̄ is defined not as the maximum
but as a mean, Eq. (21). However, the functional
relationship β = a

1+bη is still seen to hold for some
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a, b.
We can study the dependence of a, b by instance

type. As shown in Fig. 4, the parameters form clus-
ters by instance type, and the value of a is close to 1
for all instances studied. The value of b varies con-
siderably from instance to instance. Looking at the
functional form, it is reasonable to guess that b is
related to the spectral radius of the coupling matrix
J . While we bound the magnitude of the largest
eigenvalue by maxi

n∑
j=1

|Jij |, the actual value may

be smaller, and b may be understood to reflect this
correction. We check this conjecture by plotting the
relationship between ||J || and b for every problem
instance in Fig. 9.

This relationship can be particularly useful if the
largest eigenvalue of the matrix can be calculated
or estimated quickly. Then, by inverting the linear
regression shown in Fig. 9, one obtains a good ini-
tial guess for b. The initial guess for a, on the other
hand, is simply 1. This potentially reduces the hy-
perparameter optimization to local minimization in
the single parameter η, which is computationally in-
expensive.

Having given a physical description of the algo-
rithm, we now turn to studying its performance on
practical problem instances.

VII COMPARISON WITH GUROBI

Gurobi is a commercial optimization software that
solves a broad range of problems including quadratic
programming (QP), linear programming (LP), and
mixed integer programming. Additionally, the soft-
ware includes in-built heuristics to find good initial
solution candidates quickly, as well as “pre-solve”
subroutines and simplify the problem description by
eliminating redundant variables or constraints.

In order to use Gurobi, a maxcut instance can be
relaxed to either a linear program or a quadratic pro-
gram. Mapped to an LP, the instance is specified by
real variables xij ∈ R to each edge, with the inequal-
ity constraints xij ≤ 1, where xij = 1 if and only if
the edge ij is in the cut. Additional constraints fol-
low by observing that not all configurations are fea-
sible: for example, for three edges ij, jk, ki, at most
two may be part of a cut. Any feasible solution must
satisfy such cycle constraints as well, expressible as
inequalities of the form xij + xjk + xki ≤ 2. Then,
the LP is formulated as maximization of the objec-
tive function wTx, subject to the above inequalities,
where w represents the vector of edge weights.

While the number of inequalities to fully char-
acterize the feasible region are exponential in the
input, smaller sets of constraints can suffice for
good approximate solutions. The separation prob-

lem, which asks whether a candidate solution is in
the polytope or, if not, to give a hyperplane separat-
ing it from the polytope, is shown to be polynomial-
time in n for a particular choice of constraints [16].
This allows a polynomial-time, cutting-planes algo-
rithm for finding and including violated constraints
dynamically for each successive iteration of the LP
until success. Theoretical results suggest, however,
that solutions to the LP relaxation can be far from
the optimal value in general, due to a large integral-
ity gap (see, e.g, [17]). The formulation is somewhat
unnatural for maxcut, and is also seen to perform
poorly in practice due to a blowup in the number of
variables.

A more natural formulation is as a QP with linear
constraints, where every vertex i is assigned to one
variable si, and the problem is expressed as

max
1

4
sT ·W · s

s.t. − 1 ≤ si ≤ 1.

Here, the matrix W is the weighted graph Lapla-
cian, with wii =

∑
k ̸=i

wik and Wij = −wij for i 6= j.

The QP formulation is readily generalized to a semi-
definite program by promoting the spin variables to
vectors of unit length on a m-dimensional sphere.
This forms the basis for the (optimal) Goemans-
Williamson algorithm, [18], and is generally the for-
mulation of choice for exact solvers for maxcut.
While Gurobi does not support an SDP formulation,
the QP formulation is supported, with solutions via
interior point methods (specifically, a parallel bar-
rier method) and the simplex method. We therefore
input our instances into Gurobi as QPs.

Then, we can compare the time to find optimal
solution for Gurobi and lt on our benchmarking
instances. The time has to be carefully defined
in each case for a fair comparison. Gurobi is a
deterministic algorithm, except for an initial (op-
tional) heuristic step for proposing an initial solu-
tion candidate which takes a small fraction of the
total runtime. The algorithm terminates when the
optimum is found and proved. The latter typically
requires additional time to improve the upper bound
on the optimum until it matches the best optimum
found. Since we use benchmarking instances that
have known optima, we define runtime leniently as
the time to find (but not necessarily prove) the op-
timal solution.

On the other hand, lt is randomized due to the
random choice of initial state, and multiple runs are
necessary to gather statistics on the performance.
Therefore, we define runtime as the median perfor-
mance over 30 independent runs of lt for each in-
stance. Furthermore, since lt requires parameter
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FIG. 10. Performance of lt compared against Gurobi
for several benchmarking instances. The performance
metric used is median time (in seconds) taken to find
the optimum (over 10 runs), with a timeout of 103 sec-
onds. Timed out instances are not shown: Out of 130
instances, LT and Gurobi timed out on 47 and 22 in-
stances, respectively, including 7 instances where both
timed out. Times faster than a certain threshold are re-
ported by Gurobi as 0s (corresponding to points along
the left edge). lt and Gurobi find optima faster than
each other in an equal number of instances, with no clear
instance-dependent advantange. The speedup on either
side is in some cases up to three orders of magnitude.

tuning, we allow up to 20 s of hyperparameter tuning
by grid search in β, η that is not considered part of
the runtime. Note that the results of Section V sug-
gest that the parameters can be set automatically,
either adaptively as for p or by a well-motivated for-
mula for η, β, without the need for a full grid search.

Then, as shown in Fig. 10, the runtime perfor-
mance of lt and Gurobi can be compared directly
on every instance. We see that there is significant
spread in performance for every problem type, for
both lt and Gurobi. Promisingly, there are in-
stances in every problem class for which lt is sig-
nificantly faster than Gurobi.

The comparison with Gurobi illustrates that there
may be cases where properly tuned LT can outper-
form state-of-the-art solvers at a fraction of the time
cost. It is pertinent to ask whether the success of LT
over other solvers can be predicted in advance, us-
ing instance data (or quantities derived from it). We
briefly address this question.

The most obvious performance indicator is the
number of variables n. The instances used in the
time comparison with Gurobi were of size 60, 80, or
100. Another elementary indicator is clause density,
or the mean number of clauses per variable, which
for a weighted instance is the average row sum of

the graph adjacency matrix, m :=
∑
i,j

Jij/n. We

also compute the average row sum of the absolute
value of the weight matrix m̄ :=

∑
i,j

|Jij |/n. Finally,

the misfit parameter µ measures the degree of frus-
tration in the model. More precisely, it is the ra-
tio of the ground state energy of the model to the
ground state energy of a frustration-free reference
system. For a given maxcut instance, a reference
system with all weights Jij replaced by their nega-
tive absolute values −|Jij | is frustration-free, with
a ground state energy of −

∑
i<j

|Jij |. On the other

hand, the ground state energy of the original in-
stance is bounded below by −

∑
i<j

Jij . Therefore, we

define misfit as

µ :=

∑
i<j

Jij∑
i<j

|Jij |
. (32)

Then, we ask: How well does a given performance
indicator predict the runtime of LT (or Gurobi) on a
randomly chosen instance? More formally, treating
the runtime and indicator as random variables X,Y
respectively, the predictive power can be expressed
as the conditional entropy H(Y |X), defined as

H(Y |X) := −
∑

x∈X ,y∈Y
p(x, y) log

p(x, y)

p(x)
, (33)

where the sum is taken over the support sets of X,Y .
Informally, H(Y |X) quantifies the number of addi-
tional bits needed to specify Y given knowledge of
X. The largest possible value of H(Y |X) is log |X |
for a discrete sample space X , corresponding in our
case to the number of bins used to group the run-
times. We report the conditional entropy normal-
ized by this maximum, so that a normalized en-
tropy of 0 (1) corresponds to perfect (no) predictabil-
ity. The results are presented in Table II. Rela-
tive to Gurobi, the performance of LT is marginally
more predictable using the instance data. However,
clearly discernable relationships between the perfor-
mance and any of the indicators studied here could
not be obtained using the instance data available,
suggesting the need for further systematic study.

VIII COMPARISON WITH GRADIENT
DESCENT

An inspection of the lt implementation reveals that
the algorithm is operationally very similar to a gra-
dient descent algorithm. The difference lies only in
the fact that we apply a nonlinear tanh wrapper to
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Predictor Gurobi LT

n 0.73 0.69
m 0.68 0.63
m̄ 0.66 0.59
µ 0.56 0.53

TABLE II. A tabulation of the normalized conditional
entropy (as defined in Eq. (33)) of different performance
predictors with the runtime of Gurobi and lt on the
benchmarking instances. Zero indicates perfect predic-
tion, while 1 corresponds to no predictability. The real-
valued predictors m, m̄, µ were binned into 20 equally
spaced intervals, and the runtime was binned into 20
logarithmic intervals spanning the range 0.01s to 1000
s, with an additional bin for timed-out instances (t >
1000s).

each spin value in every step, while gradient descent
is fully linear. This raises a natural question: does
lt offer any advantage to gradient descent?

We formalize this comparison. The maxcut
Hamiltonian does not have an extremum over Rn,
as all of its second (and higher-order) derivatives in
any single variable vanish. Put differently, the Hes-
sian of the cost function in the spin variables has zero
on-diagonal entries, and is therefore trace zero. So,
the Hessian is indefinite everywhere, implying that
no point can take an extremal value. This implies
that a gradient descent algorithm must constrain the
state vector to lie within a closed region of Rn; then
the optima are guaranteed to lie on the boundary of
this region. The natural choice of region is the n-
dimensional hypercube Hn := [−1, 1]×n, whose ver-
tices correspond to feasible solutions to the maxcut
problem. Then, any step that displaces the state
vector outside Hn must be modified to obey the
constraint. We implement this by applying a cutoff
function to each spin at the end of every displace-
ment step. The form of this function is as follows:

cutoff(x) = sgn(x) ·min {1, |x|} . (34)

When applied to each spin as cutoff(βvi), this func-
tion has the effect of projecting every spin compo-
nent that exceeds an allowed range [−1/β, 1/β] onto
the closest boundary of the range. The free param-
eter β controls how wide the allowed range should
be.

The full algorithm may then be written down:

1. Initialize all spins uniformly at random, vi ∈
[−1, 1].

2. Apply displacement to spin vi 7→ vi + c · Fi

where Fi = ∂H/∂vi.

3. vi 7→ cutoff(βvi).
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FIG. 11. Performance of LT and gradient descent, given
by the energy obtained as a fraction of the maximum
(with 1 being optimal), across different benchmarking
instances. For each instance shown, the performance has
been averaged over 100 trials after a pre-optimization of
the hyperparamaters.

4. After p rounds, round each spin to its sign, ±1.

It is now apparent that GD mirrors lt, with the
difference lying in the choice of onsite activation
function used: lt uses the tanh function while GD
uses a hard cutoff function. Both algorithms have
identical free parameters p, c, β that play the same
or similar functional roles in each case. Then, we
can compare the performances of these algorithms
on the same instances. In Fig. 11, we see that lt
beats GD on average for the instances studied. This
suggests that the specific form of lt that uses a tanh
function offers an advantage over a hard cutoff func-
tion. This choice also corresponds to the underlying
physics described in Section IV.

IX DISCUSSION

The benchmarking of our implementation of lt on
the maxcut instances gives evidence that lt can
perform well in certain practical problem settings.
We find that the lt hyperparameters can be set
using simple rules that obviate the need for a full,
global hyperoptimization, making the algorithm par-
ticularly lightweight.

It remains to be seen how well lt fares on prob-
lems other than maxcut. We expect lt to show
similar performance in closely related quadratic un-
constrained binary (QUBO) problems. More gener-
ally, we remark that the algorithm itself is specified
by a domain relaxation, and a notion of derivative of
the objective function with respect to each variable.
These are minimal requirements found in many opti-
mization problems, for example mixed integer linear
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programs. An interesting open question is whether
lt can be adapted for use in these settings as well.
The analysis in Section IV suggests an alternative
description of the algorithm as a discretized simula-
tion of imaginary-time dynamics in a spin system.
It is interesting whether this picture can be pursued
to design improvements or variations to the algo-

rithm, or generalize it to other settings, for instance,
on problems like quantum SAT where the problem
Hamiltonian is not diagonalizable in any local basis.
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