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Heuristic optimization as a control problem

,    where

Bang-bangQuasistatic

Physically motivated heuristic optimization algorithms seek to prepare a target probability distribution (or 
state) via a series of controlled moves that guide the evolution.



The optimal control framework

PMP gives necessary conditions for a control to be optimal, in the form of an extremality condition on a classical 
functional known as the control Hamiltonian.
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Goal: Minimize a cost function of the state                                     (i.e. find the optimal control u*)

Perform a controlled evolution:  

What is a good control strategy? 
1. Quasistatic - Supported by adiabatic theorems 
2. Bang-bang -  Supported by the Pontryagin Minimum Principle (PMP)

Conjugate momenta: The control Hamiltonian:

Linear control ⇒  optimal control is necessarily bang-bang i.e. *

* Terms and conditions apply. Please consult your local control theorist.

PMP: u* satisfies:



Control design

Bang-bang: QAOA, VQE, ...Quasistatic: QAO, QA, SA, SQA, ...

,    where

?

Q: Are bang-bang control and quasistatic control polynomially 
equivalent?



QUANTUM

CLASSICAL

BANG-BANGQUASISTATIC
The heuristic optimization 
algorithm alignment chart

Quantum Approximate Optimization 
Algorithm (QAOA)

Quantum Adiabatic Optimization 
(QAO)

Simulated Annealing (SA) 

Metropolis-Hastings Monte Carlo with temperature 
shchedule:

and flipping probability:

Randomized 
descent Diffusion

Bang-bang Simulated Annealing (BBSA)

We run MH Monte-Carlo with a bang-bang schedule, 
i.e., only allowing T=0,∞
This corresponds to alternating periods of randomized 
descent and diffusion.



The instances
Hamming symmetry: c(z) ≡ c(w),  where w = |z| = # of ones in the bit string z

1. Bush of Implications (Bush) 2. Ramp with Spike (Spike)



Results



Bang-bang v. quasistatic: classical
Claim: BBSA running pure gradient descent on the Bush finds the minimum efficiently.

Proof idea: Show a poly runtime by analyzing the discrete-time Markov chain. 

Moves
Stay (S)
Descend (D)
Die (X) 

Probability
(n-w)/(n+1)

w/(n+1)
1/(n+1) 

- Expected time to stay at w   (under survival):          E[mw | X̅]    =  𝚺tPr(St-1D)

- Expected number of moves (under survival):          E[m | X̅]      ≤  𝚺wE(mw| X̅) = O(nlog(n))

- Probability of reaching the minimum:                       Pr(success) = Pr(X̅)E[m | X̅]   = Ω(1/n)

Proof sketch:



Bang-bang v. quasistatic: quantum

Claim: A depth-2 QAOA circuit minimizes the Spike instance, for any (α,β) ∊ [0,1)×[0,∞].

Proof idea: We show that the wavefunction does not “see” the spike, only the ramp.

Under a simple ramp, the Hamiltonian is one-local, H(u) = u𝚺iZi/2 - (1-u)𝚺iXi 
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e-i(π/2)Z/2 e-i(π/4)X



Bang-bang v. quasistatic: quantum

O(1)
depth

QAO QAOA

Claim: A depth-2 QAOA circuit minimizes the Spike instance, for any (α,β) ∊ [0,1)×[0,∞].



Bang-bang v. quasistatic: quantum

Claim: A depth-2 QAOA circuit minimizes the Spike instance, for any (α,β) ∊ [0,1)×[0,∞].

Proof idea: We show that the wavefunction does not “see” the spike, only the ramp.



QAOA on general symmetric instances
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e-iγ*Z

e -i(π/4)X

If a general Hamming-symmetric cost function is sufficiently “ramp-like” around w ~ 
n/2, we can try QAOA1 just like we did for the Spike instance. We need:

- Weak overlap,
- Slope at least 1/poly(n) around n/2
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QAOA on general symmetric instances
If a general Hamming-symmetric cost function is sufficiently “ramp-like” around w ~ 
n/2, we can try QAOA1 just like we did for the Spike instance. We need:

- Weak overlap,
- Slope at least 1/poly(n) around n/2



Caveats to optimal control
While PMP itself is very generally applicable, the conclusion that linearly controlled 
optimal trajectories are bang-bang has certain caveats:

1. Singular intervals: The optimal value of the control is determined by the derivative of 
the control Hamiltonian w.r.t. the control:

Singular (time) intervals are those in which the above derivative vanishes. Here, the 
optimal control remains indeterminate.

2. Infinite switches (aka Fuller phenomenon): The optimal bang-bang trajectory has an 
infinite number of switches, which renders the control infeasible. Seen in the 
optimal control of (analog) Grover search.



Thank you!


