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Heuristic optimization as a control problem

Physically motivated heuristic optimization algorithms seek to prepare a target probability distribution (or
state) via a series of controlled moves that guide the evolution.
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The optimal control framework

d
Perform a controlled evolution: ~—q = f(q,u) = [(1 —uw)Hy +uH;] -q, u:[0,T]— [0,1]

- dt
Py Goal: Minimize a cost function of the state min E(q(T")) (i.e. find the optimal control u’)
U
|b) = .
What is a good control strategy?
6 1. Quasistatic - Supported by adiabatic theorems

2. Bang-bang - Supported by the Pontryagin Minimum Principle (PMP)

PMP gives necessary conditions for a control to be optimal, in the form of an extremality condition on a classical
functional known as the control Hamiltonian.

Conjugate momenta: pP; = aCIiEIT The control Hamiltonian: H(q, P, U) =Pp- f(q, u) (— L)

PMP: u’ satisfies: Vi € [O, T], ’H(q, p, ’LL*) = muijn H(Q, P, u)

Linear control = optimal control is necessarily bang-bangi.e. Range[u*] = {0, 1}

* Terms and conditions apply. Please consult your local control theorist.



Control design

Ch) = Bl |, where  H(u) = (1= w)Hy+uH,

Quasistatic: QAO, QA, SA, SQA, ... Bang-bang: QAOA, VQE, ...

Q: Are bang-bang control and quasistatic control polynomially
equivalent?




The heuristic optimization

algorithm alignment chart QUASISTATIC

Quantum Adiabatic Optimization
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Quantum Approximate Optimization

(QAO) Algorithm (QAOA)
QUANTUM P - 0 o, = c(2)]2)(z| .
R e e S o
| P ze{0,1)"
istati n e— 71 H1 e—iB1Hp e~ BpHo
[h(u = 0)) duasistatie, [Y(u = 1)) )& = [4o) > |in) > |1ap)
Simulated Annealing (SA) Bang-bang Simulated Annealing (BBSA)
Metropolis-Hastings Monte Carlo with temperature We run MH Monte-Carlo with a bang-bang schedule,
shchedule: i.e., only allowing T=0,«
N N N This corresponds to alternating periods of randomized
o0 e > T 7o > 0 descent and diffusion.
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The instances

Hamming symmetry: c(z) = c(w), where w = |z| = # of ones in the bit string z

1. Bush of Implications (Bush)

1 nyQ
w = |2122. .. 2|

n
c(z0z1 ... 2n) = 20 + Z zi(1 — zp)
1=1

c(zp, w) = zp +w(l — z)

2. Ramp with Spike (Spike)
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0, otherwise.

c(w) =r(w) + s(w)



Results

Instance Annealing-based Bang-bang
QAO SA QAOA BBSA
Bush, A >1 poly(n) [13] exp(n)[L3] 0(1)§(8.3.2 @ (n3-)§[8.2.1
Bush, A <1 exp(n) [13] exp(n)[13] 0(1)§[8.3.2] O (n**-)§[8.2.1
Spike, 2a+3<1 poly(n) exp(n)[L3] 0O(1)§(8.3.1 O(n)§(8.2.2
Spike, 2a+[3>1 exp(n) [14] exp(n)[13] 0(1)§18.3.1 O(n)§(8.2.2

Table 1: Performance of the four algorithms, summarized. For the two instances studied, we
distinguish different parameter regimes. For the Bush instance, the performance of QAO depends

on the choice of mixer B) (see Eq.

22).

For Spike, the QAO performance depends on spike

parameters a and 3. We see that bang-bang control algorithms outperform their (quantum and
classical) annealing-based counterparts for these instances. Sources for existing results are cited,
and the new contributions are referenced by the relevant sections.



Bang-bang v. quasistatic: classical

Claim: BBSA running pure gradient descent on the Bush finds the minimum efficiently.

Proof idea: Show a poly runtime by analyzing the discrete-time Markov chain.

Proof sketch: Moves Probability
Stay (S) (n-w)/(n+1)
i) Yo(w) Descend (D) w/(n+1)
1 A %=1 Die (X) 1/(n+1)
! 1 ny/2 n
w = |2122- - 2n|
- Expected time to stay atw (under survival): E[m_ | X] = EtPr(S“D)
- Expected number of moves (under survival): Em|X] < EWE(mWI X) = O(nlog(n))

- Probability of reaching the minimum: Pr(success) = Pr(X)Em X = Q(1/n)



Bang-bang v. quasistatic: quantum

Claim: A depth-2 QAOA circuit minimizes the Spike instance, for any (e,[) € [0,1)x[0,].
Proof idea: We show that the wavefunction does not “see” the spike, only the ramp.

Under a simple ramp, the Hamiltonian is one-local, H(u) = uXZ./2 - 1-wExX
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Bang-bang v. quasistatic: quantum

Claim: A depth-2 QAOA circuit minimizes the Spike instance, for any (e,[) € [0,1)x[0,].
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Bang-bang v. quasistatic: quantum

Claim: A depth-2 QAOA circuit minimizes the Spike instance, for any (e,[) € [0,1)x[0,].

Proof idea: We show that the wavefunction does not “see” the spike, only the ramp.

n Lemma 1. Let c¢(w) be a cost function on Hamming weights, and let p € [0,1]. Suppose c(w) =
r(w) + s(w), where r,s are two functions satisfying the following:
1. miny, ¢(w) = min,, r(w).
(.( U') 2. There exist angles 3, such that QAOA1 with schedule (3,~) minimizes r(w) with probability
' at least p.
B |
n 3. If the initial state is |1g) = >, Aw|w), then s(w) overlaps weakly with |1)g) in the sense that
> Psin? (54) = ¢ <ol
0 ’lll w=1
w = |2122 .o s zn| Then, QAOA1 with schedule (8,v) minimizes c(w) with probability at least p — o(p).




QAOA on general symmetric instances

If a general Hamming-symmetric cost function is sufficiently “ramp-like” around w ~
n/2, we can try QAOAL1 just like we did for the Spike instance. We need:

- Weak overlap,

- Slope at least 1/poly(n) around n/2

by
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QAOA on general symmetric instances

If a general Hamming-symmetric cost function is sufficiently “ramp-like” around w ~
n/2, we can try QAOAL1 just like we did for the Spike instance. We need:

- Weak overlap,

- Slope at least 1/poly(n) around n/2

[,




Caveats to optimal control

While PMP itself is very generally applicable, the conclusion that linearly controlled

optimal trajectories are bang-bang has certain caveats:

1.

Singular intervals: The optimal value of the control is determined by the derivative of
the control Hamiltonian w.r.t. the control:

W (t) = 1, ?f O H(t) <0
0, ifd,H(t) >0

Singular (time) intervals are those in which the above derivative vanishes. Here, the
optimal control remains indeterminate.

Infinite switches (aka Fuller phenomenon): The optimal bang-bang trajectory has an
infinite number of switches, which renders the control infeasible. Seen in the
optimal control of (analog) Grover search.



Thank you!



