Bang-bang control as a design principle for heuristic optimization

Aniruddha Bapat^{*}, Stephen Jordan

arxiv:1812.02746

Outline

- The optimal control framework (bang-bang, quasistatic)
- Candidate algorithms and instances
- Are bang-bang and quasistatic control polynomially equivalent (No.)
- QAOA1 on symmetric instances
- Caveats to optimal control theory

Heuristic optimization as a control problem

Physically motivated heuristic optimization algorithms seek to prepare a target probability distribution (or state) via a series of controlled moves that guide the evolution.

The optimal control framework

Perform a controlled evolution: $\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{q} = f(\mathbf{q}, u) \equiv \left[(1-u)H_0 + uH_1\right] \cdot \mathbf{q}, \quad u: [0,T] \to [0,1]$ $|\psi\rangle = \begin{vmatrix} q_o \\ q_i \\ \vdots \\ \vdots \end{vmatrix}$ Goal: Minimize a cost function of What is a good control strategy? Goal: Minimize a cost function of the state $\min E(\mathbf{q}(T))$ (i.e. find the *optimal* control \mathbf{u}^*) 1. **Quasistatic** - Supported by adiabatic theorems **Bang-bang** - Supported by the Pontryagin Minimum Principle (PMP) 2.

PMP gives necessary conditions for a control to be optimal, in the form of an extremality condition on a classical

functional known as the *control Hamiltonian*.

Conjugate momenta: $p_i = \partial_{q_i} E|_T$ The control Hamiltonian: $\mathcal{H}(\mathbf{q}, \mathbf{p}, u) := \mathbf{p} \cdot f(\mathbf{q}, u) (-L)$ PMP: u^{*} satisfies: $\forall t \in [0, T], \ \mathcal{H}(\mathbf{q}, \mathbf{p}, u^*) = \min_{u} \mathcal{H}(\mathbf{q}, \mathbf{p}, u)$

Linear control \Rightarrow optimal control is necessarily bang-bang i.e. Range $[u^*] = \{0, 1\}^*$

* Terms and conditions apply. Please consult your local control theorist.

Q: Are bang-bang control and quasistatic control polynomially equivalent?

The heuristic optimization QUASISTATIC BANG-BANG algorithm alignment chart Quantum Adiabatic Optimization Quantum Approximate Optimization (QAO) Algorithm (QAOA) $H_0 = -\sum_{i=1}^n X_i$ $H_1 = \sum_{z \in \{0,1\}^n} c(z) |z\rangle \langle z|$ QUANTUM $H_0 = -\sum_{i=1}^n X_i$ $H_1 = \sum_{z \in \{0,1\}^n} c(z) |z\rangle \langle z|$ $|+\rangle^{\otimes n} \equiv |\psi_0\rangle \xrightarrow{e^{-i\gamma_1 H_1}} |\psi_1\rangle \xrightarrow{e^{-i\beta_1 H_0}} \cdots \xrightarrow{e^{-i\beta_p H_0}} |\psi_{2n}\rangle$ $|\psi(u=0)\rangle \xrightarrow{\text{quasistatic}} |\psi(u=1)\rangle$ $E(\vec{\beta},\vec{\gamma}) = \langle \vec{\beta},\vec{\gamma} | H_1 | \vec{\beta},\vec{\gamma} \rangle$ Simulated Annealing (SA) Bang-bang Simulated Annealing (BBSA) Metropolis-Hastings Monte Carlo with temperature We run MH Monte-Carlo with a bang-bang schedule, shchedule: i.e., only allowing T=0,∞ This corresponds to alternating periods of randomized $\infty \longrightarrow \cdots \longrightarrow T \longrightarrow \cdots \longrightarrow 0$ descent and diffusion. **CLASSICAL** and flipping probability: $1 \longrightarrow \cdots \min \left\{ 1, e^{-\Delta_{\text{flip}} V/T} \right\} \cdots \longrightarrow \Theta(\Delta_{\text{flip}} V)$ Randomized Diffusion descent

The instances

Hamming symmetry: $c(z) \equiv c(w)$, where w = |z| = # of ones in the bit string z

1. Bush of Implications (Bush)

$$c(z_0 z_1 \dots z_n) = z_0 + \sum_{i=1}^n z_i (1 - z_0)$$
$$c(z_0, w) = z_0 + w(1 - z_0)$$

2. Ramp with Spike (Spike)

$$r(w) = w, \quad s(w) = \begin{cases} n^{\beta}, \text{ if } w \in \left[\frac{n}{4} - \frac{n^{\alpha}}{2}, \frac{n}{4} + \frac{n^{\alpha}}{2}\right] \\ 0, \text{ otherwise.} \end{cases}$$
$$c(w) = r(w) + s(w)$$

Results

Instance	Annealing-based		Bang-bang	
	QAO	SA	QAOA	BBSA
Bush, $\lambda \geq 1$	poly(n) 13	$\exp(n)$ 13	O(1)§ 8.3.2	$\tilde{O}(n^{3.5})$ § 8.2.1
Bush, $\lambda < 1$	$\exp(n)$ 13	$\exp(n)$ 13	O(1)§ 8.3.2	$\tilde{O}(n^{3.5})$ § 8.2.1
Spike, $2lpha+eta\leq 1$	poly(n) 14	$\exp(n)$ 13	O(1)§ 8.3.1	O(n)§ 8.2.2
Spike, $2\alpha+\beta>1$	$\exp(n)$ 14	$\exp(n)$ 13	O(1)§ 8.3.1	O(n)§ 8.2.2

Table 1: Performance of the four algorithms, summarized. For the two instances studied, we distinguish different parameter regimes. For the Bush instance, the performance of QAO depends on the choice of mixer B_{λ} (see Eq. 22). For Spike, the QAO performance depends on spike parameters α and β . We see that bang-bang control algorithms outperform their (quantum and classical) annealing-based counterparts for these instances. Sources for existing results are cited, and the new contributions are referenced by the relevant sections.

Bang-bang v. quasistatic: classical

Claim: BBSA running pure gradient descent on the Bush finds the minimum efficiently.

Proof idea: Show a poly runtime by analyzing the discrete-time Markov chain.

<u>Moves</u>	<u>Probability</u>
Stay (S)	(n-w)/(n+1)
Descend (D)	w/(n+1)
Die (X)	1/(n+1)

- Expected time to stay at w (under survival):
- Expected number of moves (under survival):
- Probability of reaching the minimum:

 $E[m_{w} \mid \overline{X}] = \Sigma_{t} Pr(S^{t-1}D)$ $E[m \mid \overline{X}] \leq \Sigma_{w} E(m_{w} \mid \overline{X}) = O(nlog(n))$ $Pr(success) = Pr(\overline{X})^{E[m \mid \overline{X}]} = \Omega(1/n)$

Bang-bang v. quasistatic: quantum

Claim: A depth-2 QAOA circuit minimizes the Spike instance, for any $(\alpha,\beta) \in [0,1) \times [0,\infty]$.

Proof idea: We show that the wavefunction does not "see" the spike, only the ramp.

Under a simple ramp, the Hamiltonian is one-local, $H(u) = u \sum_{i} Z_{i}/2 - (1-u) \sum_{i} X_{i}$

Bang-bang v. quasistatic: quantum

Claim: A depth-2 QAOA circuit minimizes the Spike instance, for any $(\alpha, \beta) \in [0,1) \times [0,\infty]$.

Bang-bang v. quasistatic: quantum

Claim: A depth-2 QAOA circuit minimizes the Spike instance, for any $(\alpha, \beta) \in [0,1) \times [0,\infty]$.

Proof idea: We show that the wavefunction does not "see" the spike, only the ramp.

Lemma 1. Let c(w) be a cost function on Hamming weights, and let $p \in [0,1]$. Suppose c(w) = r(w) + s(w), where r, s are two functions satisfying the following:

- 1. $\min_w c(w) = \min_w r(w)$.
- 2. There exist angles β, γ such that QAOA1 with schedule (β, γ) minimizes r(w) with probability at least p.
- 3. If the initial state is $|\psi_0\rangle = \sum_w A_w |w\rangle$, then s(w) overlaps weakly with $|\psi_0\rangle$ in the sense that $\sum_{w=1}^n 4|A_w|^2 \sin^2\left(\frac{\gamma s(w)}{2}\right) \equiv q \leq o(p)$

Then, QAOA1 with schedule (β, γ) minimizes c(w) with probability at least p - o(p).

QAOA on general symmetric instances

If a general Hamming-symmetric cost function is sufficiently "ramp-like" around w ~ n/2, we can try QAOA1 just like we did for the Spike instance. We need:

- Weak overlap,
- Slope at least 1/poly(n) around n/2

QAOA on general symmetric instances

If a general Hamming-symmetric cost function is sufficiently "ramp-like" around w ~ n/2, we can try QAOA1 just like we did for the Spike instance. We need:

- Weak overlap,
- Slope at least 1/poly(n) around n/2

Caveats to optimal control

While PMP itself is very generally applicable, the conclusion that linearly controlled optimal trajectories are bang-bang has certain caveats:

1. Singular intervals: The optimal value of the control is determined by the derivative of the control Hamiltonian w.r.t. the control:

$$u^*(t) = \begin{cases} 1, & \text{if } \partial_u \mathcal{H}(t) < 0\\ 0, & \text{if } \partial_u \mathcal{H}(t) > 0 \end{cases}$$

Singular (time) intervals are those in which the above derivative vanishes. Here, the optimal control remains indeterminate.

2. Infinite switches (aka *Fuller phenomenon*): The optimal bang-bang trajectory has an infinite number of switches, which renders the control infeasible. Seen in the optimal control of (analog) Grover search.

Thank you!