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Abstract

Physically motivated classical heuristic optimization algorithms such as simulated annealing
(SA) treat the objective function as an energy landscape, and allow walkers to escape local
minima. It has been argued that quantum properties such as tunneling may give quantum
algorithms advantage in finding ground states of vast, rugged cost landscapes. Indeed, the
Quantum Adiabatic Algorithm (QAO) and the recent Quantum Approximate Optimization Al-
gorithm (QAOA) have shown promising results on various problem instances that are considered
classically hard. Here, building on previous observations from [1, 2], we argue that the type
of control strategy used by the optimization algorithm may be crucial to its success. Along
with SA, QAO, and QAOA, we define a new, bang-bang version of simulated annealing, BBSA,
and study the performance of these algorithms on two well-studied problem instances from the
literature. Both classically and quantumly, the successful control strategy is found to be bang-
bang, exponentially outperforming the quasistatic analogues on the same instances. Lastly, we
construct O(1)-depth QAOA protocols for a class of symmetric cost functions, and provide an
accompanying physical picture.

1 Introduction

As quantum computing enters the so-called NISQ era [3], some focus has started shifting to noisy,
shallow digital computations, and a need to re-examine existing quantum heuristic algorithms has
emerged. The quantum adiabatic optimization algorithm (QAO), introduced in the previous decade
[4], provides a paradigm for quantum speedups in optimization problems, where one performs a
quasistatic Schrödinger evolution from an initial quantum state into the ground state of computa-
tional or physical interest. Runtime bounds for QAO typically depend, via adiabatic theorems, on
the minimum spectral gap between the ground state and first excited state.

The Quantum Approximate Optimization Algorithm (QAOA) provides an alternative frame-
work to designing quantum optimization algorithms, which is based on parameterized families of
quantum circuits with adjustable parameters [5, 6]. Such variational circuits are parameterized by
a depth, an initial quantum state, and a set of Hamiltonian operators under which the state can
evolve. An instance of a variational circuit is further specified by a series of (labeled) evolution
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times that determine which operator is applied and for how long. Along with QAOA, several other
recent models of heuristic computation fit into the variational circuit paradigm [7, 8, 9, 10, 11].

A primary distinguishing feature between the quasistatic paradigm of QAO and simulated
annealing (SA) and the variational circuit paradigm is in the design of their evolution schedules,
from quasistatic to a rapidly switching, or bang-bang, schedule. Recently, it was observed [1, 2] that
the Pontryagin Minimum Principle [12] implies that variational methods that employ a bang-bang
evolution schedule are sufficient for optimality of the optimization protocol. Furthermore, the paper
that introduces QAOA [5] also gives evidence pointing to an exponential speedup between QAOA
and QAO. This raises two questions: Firstly, can a design shift from quasistatic to bang-bang yield
provable superpolynomial improvements in the runtime, or are the two frameworks polynomially
equivalent? Secondly, can the same control theoretic reasoning be applied to the design of classical
optimization algorithms? In this work, we answer these questions by studying the performance of
bang-bang controlled algorithms on certain well-studied instances, and make comparisons to the
quasistatic, annealing-type algorithms. We prove that, on these instances, going from quasistatic
scheduling to bang-bang can bring about an exponential speedup for both classical and quantum
optimization. We also discuss the applicability and potential limitations of the optimal control
framework to the problem of designing heuristic optimization algorithms.

2 Summary of results

The main results of this paper may be found in Sec. 8, where we study the performance of four
candidate algorithms given in Table 2 on two benchmarking instances, and find that the bang-
bang control algorithms exponentially outperform both classical and quantum annealing-based
algorithms. These results are also summarized in Table 1.

Instance Annealing-based Bang-bang

QAO SA QAOA BBSA

Bush, λ ≥ 1 poly(n) [13] exp(n)[13] O(1)§ 8.3.2 Õ
(
n3.5...

)
§ 8.2.1

Bush, λ < 1 exp(n) [13] exp(n)[13] O(1)§ 8.3.2 Õ
(
n3.5...

)
§ 8.2.1

Spike, 2a+ b ≤ 1 poly(n) [14] exp(n)[13] O(1)§ 8.3.1 O(n)§ 8.2.2
Spike, 2a+ b > 1 exp(n) [14] exp(n)[13] O(1)§ 8.3.1 O(n)§ 8.2.2

Table 1: Performance of the four algorithms, summarized. For the two instances studied, we
distinguish different parameter regimes. For the Bush instance, the performance of QAO depends
on the choice of mixer Bλ (see Eq. 23). For Spike, the QAO performance depends on spike
parameters a and b. We see that bang-bang control algorithms outperform their (quantum and
classical) annealing-based counterparts for these instances. Sources for existing results are cited,
and the new contributions are referenced by the relevant sections.

In addition, we study the performance of single-round QAOA (or QAOA1) on a more general
class of symmetric cost functions, and give sufficient conditions under which QAOA1 can success-
fully find minima for these functions. These results are stated in Lemma 1 and Theorem 1. In
Sec. 6, we elaborate on the theoretical motivation behind choosing a bang-bang schedule and the
caveats therein.
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3 Preliminaries

First, we present some notation that will be used throughout the paper. Any problem instance of
size n will be given as a constraint satisfaction problem on Boolean strings of length n. An n-bit
string will be expressed as a boldfaced variable, e.g. z ∈ {0, 1}n, in analogy with vector quantities.
Variables denoting bits of a string will be expressed in normal font (e.g. the i-th bit of z is zi).
Similarly, the Hamming weight of a string, which is defined as the (integer) 1-norm of the bit string,
or the number of 1’s in a bit string,

|z| :=
n∑

i=1

zi (1)

will also be represented by non-bold letters such as w, v to indicate that it is a scalar quantity like
the value of a bit.

We will be interested in expressing states by labels such as a string variable z, or scalar variables
w, z, etc. In either case, the convention will be to use 2-normalized kets |·〉, or 1-normalized vectors,
for which we will use the notation |·). In particular, a state labeled by Hamming weight w will
denote the equal superposition over all bit strings with that Hamming weight,

|w〉 := 1
√
(n
w

)

∑

|z|=w

|z〉, |w) := 1
(n
w

)

∑

|z|=w

|z) (2)

Problem instances are given as a cost function on bit strings,

c : {0, 1}n → Z (3)

c(z) = cost of bit string z. (4)

There is a natural Hamiltonian operator C (and corresponding unitary C) associated with this
function that is diagonal in the computational basis, with eigenvalue c(z) for every corresponding
eigenvector z ∈ {0, 1}n. Explicitly,

C :=
∑

z∈{0,1}n
c(z)|z〉〈z|, C(γ) := e−iγC (5)

Classical n-bit strings are naturally representable as vertices of an n-dimensional hypercube graph.
This is often the representation of choice, as walks on the hypercube are generated by sequences of
bit flips on the string, which correspond to the 1-local quantum operator

B := −
n∑

i=1

Xi, B(β) := e−iβB (6)

where Xi ≡ 1⊗ · · · ⊗ 1
︸ ︷︷ ︸

i−1

⊗X ⊗ 1⊗ · · · ⊗ 1
︸ ︷︷ ︸

n−i

, and X =

(
0 1
1 0

)

is the Pauli-X operator. Unitary

evolutions of a quantum state under B,C achieve amplitude mixing and coherent, cost-dependent
phase rotations, respectively. Canonically, both QAO and QAOA (see Table 2 for full names) use
Hamiltonians of the form B and C. However, as discussed towards the end of Sec. 8.1, other choices
can affect the performance on a given instance.
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Abbreviation Name of Algorithm Reference

QAO Quantum adiabatic optimization (algorithm) [4]
SA Simulated annealing [13]

QAOA Quantum approximate optimization algorithm [5]
BBSA Bang-bang simulated annealing § 5.1

Table 2: Table of abbreviations for the algorithms studied in this paper. The last algorithm, BBSA,
is introduced in this paper.

Now, we will describe the candidate algorithms listed in Table 2. It will become evident that
these algorithms can all be expressed in the control framework given in Appendix A. This connection
is important, as it allows us to borrow existing results from optimal control theory to the setting
of heuristic optimization.

4 Annealing-based algorithms

4.1 Simulated annealing

Simulated Annealing (SA) is a family of classical heuristic optimization algorithms that seek to
minimize a potential via the evolution of a classical probability distribution under a simulated
cooling process. The dynamics of the distribution are governed by two competing influences:

• Descent with respect to the cost function c(z).

• Thermal fluctuations that kick the walker in a random uphill direction with Boltzmann
probability, defined according to a controlled temperature parameter τ .

In practice, the above dynamics may be achieved via the following random walk:

1. Initialize the walker at location r1.

2. Run a p-round annealing schedule, where the i-th round is given by ti ∈ Z≥0 time steps and
a temperature parameter τi ∈ R≥0. For index i ∈ [p], run:

(a) For ti iterations, repeat:

i. Pick direction e uniformly at random from available local unit displacement vectors.

ii. Let δe := c(ri⊕e)−c(ri) be the cost increase in moving walker from current position
ri to new position ri+1 = ri ⊕ e.

iii. If δe ≤ 0, move to new location with certainty. Otherwise, move with Boltzmann
probability e−δe/τi , where τi is the current temperature in the schedule. In other
words,

Pr(ri → ri ⊕ e) = min
{

1, e−δe/τi
}

. (7)

3. Repeat steps 1-2 several times, and report the minimal sampled configuration z∗ and the
corresponding cost c(z∗).
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The temperature schedule τ = (τ1, τ2, . . . , τp) must be optimized in order to achieve a final
distribution that is well-supported on low-energy states (including the global minima, ideally). In
practice, one applies a finite “cooling” schedule in which the elements of τ descend from ∞ to 0.
At each temperature τi, the time steps ti may be seen as relaxation time steps, where the walker
distribution equilibrates under thermal exchange with the simulated bath at temperature τi. In
the limit of infinitely slow, monotonically decreasing temperature schedules that satisfy certain
additional conditions arising from deep local minima in the problem instance, simulated annealing
always converges to the lowest-cost configuration [15, 16, 17, 18]. However, finite-time schedules
and a finite relaxation time per temperature step can undo the theoretical guarantee.

The position update of the walkers in the above scheme is implemented via the Metropolis-
Hastings rule, where uphill motions are suppressed with Boltzmann probability. This implies that
steeper climbs quickly become exponentially unlikely, resulting in an effective trapping of walkers
in basins of depth ∼ τi. Within these basins, sufficiently high relaxation times allow the walkers to
find deep minima. Intuitively, the walkers are allowed to climb barriers “just high enough” so as
to settle into progressively deeper minima, as τi decreases through the course of the algorithm.

The above process may be seen as a discretization of an approximately equivalent, continuous-
time Markov process. In the parlance of control introduced in Appendix A, the dynamics of the
walker distribution is generated by a stochastic operator H (τ(t)) that is singly controlled by the
time-dependent temperature parameter τ(t). For two neighboring positions z, z′ in the space with
a mutual displacement unit vector e = z′− z, the corresponding matrix element may be written as

H(τ)〈zz′〉 =







Z(τ, z), if z = z′

1, if δe ≤ 0

e−δec/τ , if δe > 0

(8)

where the diagonal term term Z(τ, z) is the negative column sum of the z column of H(τ), a
condition which ensures stochasticity of the Markov process. Then, the continuous-time dynamics
of the probability vector are given by the differential equation

Ṗ (t) = −H(τ(t))P (t) (9)

Under a discretization of the above into small time slices ∆ti (such that ||H(τi)||∆ti < 1),
and approximating the temperature schedule as a piecewise constant function, we may rewrite
the continuous process as a Markov chain where the dynamics at the i-th slice are given by the
stochastic matrix 1−H(τi)∆ti. This corresponds to the i-th step of the discrete random walk.

The infinite-temperature and zero-temperature limits of H are important special cases. At
τ = ∞, walkers choose random directions and walk with certainty, independent of the potential.
This corresponds to the case of diffusion. On the other hand, at τ = 0, walkers walk in a randomly
chosen direction if and only if the resulting cost is no greater than the current cost. This is what
we may call randomized gradient descent. We will denote these operators by D,G respectively and
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give their form below:

D〈zz′〉 := H(0)〈zz′〉 =







−n(z), if z = z′

1, if δe ≤ 0

1, if δe > 0

(10)

G〈zz′〉 := H(∞)〈zz′〉 =







−n<(z), if z = z′

1, if δe ≤ 0

0, if δe > 0

(11)

where n(z) is the number of neighbors, and n<(z) the number of “downhill” neighbors, of z. (Note:
For all bit strings z, n(z) = n on the usual n-dimensional hypercube.)

4.2 SA with linear update

Under Metropolis-Hastings Monte Carlo, we see that the dynamics evolve under H(τ), which is
an operator controlled by the temperature schedule τ . The obvious bang-bang analogue to this
is to alternate between periods of zero- and infinite-temperature Metropolis moves, which is the
algorithm introduced in Sec. 5.1. However, to argue that bang-bang control is optimal using the
optimal control framework (as in Sec. 6), we must first ensure that the dynamics are linear in the
controls. In this section, we present a linearized variant of SA, so that within algorithms of this
class, it will be the case that bang-bang control is optimal as a consequence of the Pontryagin
Minimum Principle.

Suppose that instead of Metropolis-Hastings probability min
{
1, e−δe/τ

}
, we use a probability

uΘ(δe), where Θ(·) is the Heaviside step function, and u ∈ [0, 1] is a control parameter. That is,

Pr(z → z⊕ e) =

{

1, if δe ≤ 0

u, if δe > 0
(12)

This rule is qualitatively different from Metropolis-Hastings, since it attaches importance not to the
exact energy difference between neighboring states, but only to its sign. Furthermore, the update
rule is not guaranteed to satisfy physical prerequisites such as detailed balance that guarantee the
convergence of the limiting distribution. However, it is a valid update rule, and we will call SA
equipped with these dynamics linear update SA.

Importantly, linear update SA is expressible in the linear control framework. It is possible to
write the Markov matrix H(u) corresponding to the continuous version of Eq. 12 as a sum of the
diffusion matrix D and the randomized gradient descent operator G,

H(u) = uD + (1− u)G (13)

Finally, we see that, H(u = 0) = D and H(u = 0) = G, thus reproducing the operators appearing
in standard SA in the limit of infinite and zero temperature (i.e. u = 0, 1), which are the relevant
parameter values under bang-bang control.

4.3 QAO

The adiabatic algorithm, proposed in 2000 by Farhi, Goldstone and Gutmann [4], is a (quantum)
heuristic combinatorial optimization algorithm based upon the adiabatic theorem from quantum
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mechanics. The adiabatic theorem, loosely stated, says that a system evolving under a time-
varying Hamiltonian, when initialized in a ground state, stays in the instantaneous ground state as
the Hamiltonian is varied slowly in time. The recipe to turn this statement into an algorithm for
finding global minima is as follows:

1. Initialize the system in an easily preparable ground state of a Hamiltonian B.

2. Read the problem instance (cost function c(z)), and map it to an equivalent Hamiltonian C,
as in Eq. 5.

3. Implement Schrödinger evolution of the state over the time interval [0, T ] under a controlled
Hamiltonian H(s) = u1(s)B + u2(s)C, where s = t/T is the scaled time parameter, and
u1, u2 are functions of s that describe the annealing schedule. The schedule satisfies u1(0) =
1− u2(0) = 1, and u1(1) = 1− u2(1) = 0.

4. Measure the resulting state in the computational basis.

Under adiabaticity (i.e. when the schedule varies slowly in s), the above algorithm evolves the
initial state from the ground state of B to that of C, which is a state that encodes the solution
to optimization problem. In particular, the algorithm succeeds if the rate is slower than inverse
polynomial in the first spectral gap λ(s) (i.e. the energy difference between the ground state and
the first excited state) at all times. Typically, this yields a condition on the true runtime T [19, 20]:

T & O

(
1

λ2

)

(14)

where λ = mins λs. Therefore, the guarantee of success of an adiabatic protocol lies in knowing
that the minimum gap λ does not scale super-polynomially with n. However, it should be noted
that this does not rule out good empirical performance. In fact, by cleverly varying speed as a
function of the instantaneous spectral gap, important speedups such as the Grover speedup [21],
and the exponential speedup for glued trees, [22] can be recovered.

Like Linear Update SA, the QAO Hamiltonian

H(u1, u2) = u1B + u2C (15)

fits into the linear control framework [1]. In fact, we may simplify the above Hamiltonian to a
singly-controlled Hamiltonian as follows. In practical applications of QAO, there is a maximum
magnitude threshold (say J) for the controls, given by hardware constraints. We assume that this
cutoff does not scale with the input size of the instance. Assume also that the lower cutoff for
both u1 and u2 is 0. In other words, u1, u2 ∈ [0, J ]. These design constraints give us a restricted
version of QAO where the controls are non-negative and bounded. This restriction is applied simply
to state our algorithms within a uniform, linear control framework. Adiabatic algorithms for the
instances studied in later sections fit within this framework.

Then, observe that when u1+u2 > 0, we can rescale the controls by factor u1(s)+u2(s), giving
us the following mapping of the time variable and the controls:

ds

dt
7→ ds

dt
· (u1(s) + u2(s)) (16)

(u1(s), u2(s)) 7→
(

u :=
u1(s)

u1(s) + u2(s)
, 1− u

)

(17)
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Under this mapping, the time parameter is rescaled by a factor of at most 2J (corresponding
to a constant slowdown), while the parametric Hamiltonian now looks like

H(u1, u2) 7→ H(u) = uB + (1− u)C (18)

When u1(s) = u2(s) = 0, which is the only case not covered by the above mapping, we see that
the dynamics “switch off” completely. This feature is useful only when the total time T is greater
than the time necessary to complete the algorithm. However, if we study protocols as a function
of the time horizon T , this feature becomes unnecessary, and we may safely ignore it.

Therefore, we have successfully mapped QAO to a linear, single control framework with only a
constant overhead in the run time. From now on, we assume that QAO possesses the form given
in Eq. 18.

5 Bang-bang algorithms

In parallel with the developments in annealing-based methods, extensive studies have been con-
ducted into the problem of optimal control of quantum dynamics (see [23]), particularly in the
context of many-body ground state preparation, e.g [24]. It is often found to be that case that,
contrary to a quasistatic schedule, a rapidly switching, bang-bang schedule could be engineered to
prepare states quickly.

In combinatorial optimization, an alternative framework based on circuits with variable param-
eters has been investigated, and has recently gained interest with the introduction of the Quantum
Approximate Optimization Algorithm (QAOA), [5]. This is in fact an example of bang-bang con-
trol, as observed in [1]. The related problem of ground state preparation has also been approached
using Variational Quantum Eigensolver (VQE) ansätze [25] that bear close resemblance to QAOA
in their setup. The recent work by Hadfield et al. [7] has proposed a relabeling of the acronym
QAOA to the ‘Quantum Alternating Operator Ansatz’ to capture this generality. In this manner,
a new path that explores classical design strategies of quantum algorithms, also known as a hybrid
approach, has been paved.

In the coming sections, we will formally introduce QAOA, as well as a new, classical bang-bang
version of SA which we call bang-bang SA, or BBSA. Then in Sec. 6, we will elaborate on the
theoretical motivation behind choosing the bang-bang approach.

5.1 Bang-bang simulated annealing (BBSA)

BBSA is the restriction of linear update simulated annealing (see Sec. 4.2) to bang-bang schedules.
In other words, this is an algorithm that alternately applies diffusion and randomized gradient
descent to the state. An instance of this algorithm may then be specified by the number of rounds
p (where in each round we apply the two operators in succession), and the corresponding evolution
times for each round.

Observe that Metropolis-Hastings SA, when restricted to τ = 0,∞, reduces to bang-bang SA.

5.2 QAOA

The Quantum Approximate Optimization Algorithm (QAOA) was introduced by Farhi et al. in
2014, [5], as an alternative ansatz to the QAO. We note (as is done in [1]) that, like QAO, QAOA
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is a restriction of the linearly controlled Hamiltonian to the case of bang-bang control, i.e., where
we only allow u = 0, 1 at any given time.

Restricted in this way, a QAOA protocol effectively implements a series of alternating Hamilto-
nian evolutions under the mixing operator B, and the cost operator C. Therefore, for a total of p
rounds of alternating evolution with evolution angles ~β := (β1, . . . , βp) , ~γ := (γ1, . . . , γp) for B and
C respectively, the final state prepared by QAOA may be expressed as

|~β,~γ〉 =
[

p
∏

i=1

B(βi)C(γi)
]

|ψ0〉 (19)

where we used the parameterized operators from Eq. 5, 6, and, as in the case of QAO, the initial
state |ψ0〉 is an easily preparable state such as the equal superposition of bitstrings, |+⊗n〉.

QAOA with a fixed number of rounds p, also written as QAOAp, is a scheme for preparing
one of a family of trial states of the form |~β,~γ〉. With the angles as search parameters, a figure of
merit such as the energy expectation of the cost operator E(~β,~γ) = 〈~β,~γ|C|~β,~γ〉 is approximately
minimized with the aid of classical outer loop optimization.

6 Conditions for optimality of bang-bang control

Now, we will elaborate on the theoretical motivation for choosing a bang-bang approach to op-
timization algorithms, expanding on the observations made in [1, 2]. The Pontryagin Minimum
Principle (PMP) from optimal control theory [12] provides key insight into the nature of optimal
schedules for heuristic optimization algorithms expressible in the control framework. As discussed
in Appendix A, PMP gives necessary conditions on the control in the form of a minimization of
the control Hamiltonian, which is a classical functional of the state amplitudes and corresponding
conjugate “momenta”, and depends on the control parameters as well.

When the control Hamiltonian H is linear in the control vector u, the minimization condition
Eq. 53 implies that the optimal control is extremal, in the sense that the control only takes values
on the boundary of the feasible control set at any given time. When the control parameters are
individually constrained to lie in a certain interval, ui ∈ [ai, bi], then we say that the optimal
protocol is bang-bang, i.e. ui(t) = ai or bi. Thus, the individual controls switch between their
extremal values through the course of the protocol. While the heuristic algorithms QAO, QAOA
and SA with linear update satisfy the condition of linear control, one should exercise caution when
stating the optimality of bang-bang control within these frameworks. We note a few important
caveats here:

1. PMP simply gives a necessary condition for optimality, it does not provide the optimal pro-
tocol. A different control theory tool, the Hamilton-Jacobi-Bellman equation, does provide a
way to find the optimal protocol via dynamic programming.

2. There may be an arbitrary number of switches in the optimal bang-bang protocol. In fact,
some problems exhibit the so-called Fuller phenomenon, in which the optimal control sequence
has an infinite number of bangs, and is therefore rendered infeasible.

3. The control Hamiltonian may become singular at any point during the protocol. A singular
interval is one in which the first derivative of H with respect to u vanishes. In these intervals,
the optimal control is not necessarily bang-bang. The presence of generic singular intervals has
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already been observed before in the dynamics of spin systems (see, e.g. [26, 27]). Therefore,
in order to guarantee that the optimal control is bang-bang at all times, one must first show
that there are no singular intervals during the protocol.

4. The original PMP is stated and proved for dynamics over Euclidean vector spaces over R.
However, in quantum optimization the amplitudes take values in C, and the Hilbert space is
a complex projective vector space with a non-Euclidean geometry. The generalization must
be made with caution.

Despite these caveats, PMP does provide theoretical motivation for using bang-bang control as a
design principle for heuristic optimization algorithms. In the following sections, we exhibit examples
where bang-bang control exponentially outperforms conventional SA and QAO.

7 The problem instances

Now, we describe the problem instances that will be used as benchmarks for our algorithms. The
two following instances have appeared in the context of comparisons between quantum and classical
heuristic optimization algorithms, usually to show the inability of the classical algorithm to escape
a local minimum and find the true, global minimum [13, 14, 28]. This is often interpreted as
evidence of a quantum advantage, such as the ability to tunnel through barriers. In keeping with
this tradition, we will select these as our benchmarking instances, and look for general features in
the performance of our candidate algorithms.

Figure 1: Schematic energy landscapes of the two instances, Spike (left) and Bush (right). In each
diagram, the blue curve indicates the distribution of the initial state, the equal superposition over
all bit strings.

7.1 Bush of implications

The bush of implications or Bush is an instance first crafted in [13] in order to demonstrate the
failure of SA where QAO succeeds, with an exponential separation between the two. In Bush, the
potential is not fully symmetric under permutation of bits. Instead, the first bit (the “central”
bit, indexed by 0) determines the potential acting on the Hamming weight of the remaining n
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“peripheral” bits. Specifically,

c(z = z0z1 . . . zn) = z0 +

n∑

i=1

zi (1− z0) = z0 + w (1− z0) (20)

where w = |z1 . . . zn|. So, the potential is constant and equal to 1 when z0 = 1, and a Hamming
ramp, r(w) = w when z0 = 0, as shown in Fig. 1. Note that we adopted a bit-flipped definition
of c as compared to the original in [13]. The reason is simply notational convenience. The energy
landscape of the bush of implications can be viewed as the number of clauses violated in a constraint
satisfaction problem, where each clause takes the form ¬z0 =⇒ ¬zj for j > 0, which lends the
instance its name.

7.2 Hamming ramp with spike

Next, we present a second family of Hamming-symmetric potentials studied first in [13, 29], the
Hamming ramp with a spike. In the general form more recently studied in [14, 30, 28], this potential
is given by a ramp r(w) = w, plus a rectangular “spike” function s(w) centered at w = n/4 with
width O(na) and height O(nb), for two exponents a, b ∈ [0, 1].

Ramp: r(w) = w, Spike: s(w) =

{

nb, if w ∈ [n4 − na

2 ,
n
4 + na

2 ]

0, otherwise.
(21)

Full Potential: c(w) = r(w) + s(w) (22)

We will use this form for the Spike family of instances.

8 Performance

Now, we will state the performance of the algorithms from Sec. 4, 5 on the instances defined in
Sec. 7.1, deriving or using existing results as appropriate. We will find that in both the classical
(SA vs. BBSA) and the quantum (QAO vs. QAOA) settings, there exist parameter regimes in
which the bang-bang algorithms are exponentially faster than their quasistatic analogues.

8.1 SA and QAO

For both the Bush and Spike examples, Farhi et al. argue in [13] that simulated annealing gets
stuck in local minima, and is exponentially unlikely to reach the global minimum in polynomial
time, in the input size n→ ∞. Additionally, they argue for the success of QAO on these instances
in certain parameter regimes.

For the Spike example, [29] and [30] show that when the width and height parameters satisfy
a+ b ≤ 1/2, quantum annealing solves Spike efficiently. If, on the other hand, 2a+ b > 1, it was
shown by [14] that the minimum spectral gap has an exponential scaling in n, implying the failure
of quantum annealing in this problem regime. For the Bush example, it was shown in [13] that
the gap scaling is polynomial in n, thus allowing for an efficient adiabatic algorithm to solve this
instance. We note that the performance depends on the choice of the initial mixing Hamiltonian
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B. In particular, out of the following family of mixers

Bλ = −λ(n+ 1)X0 −
n∑

i=1

Xi, (23)

QAO is successful when λ ≥ 1. On the other hand, when λ = 1/(n + 1) < 1, we recover the
canonical mixing operator B from Eq. 6, and QAO is expected to take exponential time to solve
Bush.

Despite the caveats, Bush and Spike are examples of instances where we have an exponential
separation between a quantum (QAO) and classical (SA) algorithm. However, in the next section
we show that a different, purely classical, bang-bang strategy matches the performance of QAO on
the Bush and Spike instances by solving them in polynomial time.

8.2 Bang-bang simulated annealing

Now, we will show that the bang-bang version of simulated annealing is able to find the ground
state of both Bush and Spike in time polynomial in n, and therefore exponentially outperforms SA
(and QAO for certain parameter regimes, see Table 1), on both instances.

8.2.1 Bush

We will now show that BBSA efficiently finds the minimum of Bush via BBSA. In fact, the protocol
simply involves performing randomized gradient descent (G) without any switches to diffusion.
First, we characterize the G matrix for this instance. The natural basis for this problem is a
conditional Hamming basis {|z0, w) : z0 ∈ [1], w ∈ [n]} parameterized by the value of the central bit
z0, and the weight of the peripheral string w = |z1 · · · zn|. The allowed transitions under G are as
given below:

|0, w) → |1, w), for all w > 0. (24)

|z0, w) → |z0, w − 1), for all z0 ∈ [1], w > 0. (25)

|1, 0) → |0, 0). (26)

In particular, this implies that a walker at the global minimum |0, 0) cannot leave underG. Consider
a discrete, Markov chain Monte Carlo implementation of G, in which we break up the Markov
evolution into N = 1/δt steps of size δt. The stepsize δt is an empirical parameter which will be set
later, while at the moment we only assume that δt ≪ 1. Then, we may write the Markov evolution
as

|PN ) =

[
N∏

i=1

e−Gδt

]

|P0) ≃
[

N∏

i=1

(1−Gδt)

]

|P0) (27)

Each step 1−Gδt above is a stochastic evolution if δt is sufficiently small, i.e., if all entries of the
matrix represent valid probabilities. The requirement that the column sum be 1 is automatically
satisfied since G is column-sum-zero. Then, we start with a walker sampled from the initial state
|P0), and, for every step 1 to N , we update the walker’s position based on the transition probabilities
given by 1 − Gδt. This is given in more detail below. We will show that the above procedure
transports a fraction of at least n−2.503 of walkers to the global minimum, in number of steps
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N = O
(
1
δt log n

)
. Finally, arguing that it suffices to choose δt = Θ(n−1) gives a polynomial

runtime of Θ(n3.503 log n) to have a constant success probability.
In our analysis, we only keep track of the walker in the z0 = 0 subspace, which contains the

global minimum. Any walker that starts in or enters the z0 = 1 subspace during the algorithm
will be presumed dead, and we terminate its walk. This simplification is allowed, since it may only
worsen the success probability obtained through this analysis. Initially, exactly half of the walkers
are alive, i.e. in the subspace z0 = 0, and concentrated in a band of width ∼ √

n around w = n/2.
For a walker at Hamming weight w > 0, there are three possible moves (illustrated in Fig. 1):

1. (D) Descend to weight w − 1, with probability wδt.

2. (S) Stay at the same location with probability 1− (w + 1)δt.

3. (X) “Die”, i.e., escape to the z0 = 1 subspace, with probability δt.

When w = 0, the D andX moves are forbidden, and the walker can only stay in place. Additionally,
we denote the event of survival (i.e. D or S) by X̄. Now, we track the random walk under the
stated moves. Let m̂ be a random variable representing the total number of moves the walker takes
to reach the global minimum, |0, 0). If the walker dies, we say that m̂ = ∞. Otherwise, m̂ is
finite and equal to the sum of number of moves spent at each weight w = 1, 2, . . . , n. Defining a
corresponding random variable m̂w for the number of moves spent at each weight, we may write

m̂ =

n∑

w=1

m̂w (28)

The expected value of m̂ tells us how many moves any given walker needs to reach the global
minimum under G. However, since we are only interested in living walkers, we will condition the
expectation on the walker staying alive (X̄). Then,

E

(
m̂ | X̄

)
=

n∑

w=1

E

(
m̂w | X̄

)
(29)

At each weight w, the condition of survival limits the allowed moves to the regular expression S∗D.
In other words, the walker stays in place for some number of moves before descending. Note that
the probability of not dying in m moves is (1 − δt)m. Therefore, the probability of spending m
total moves, conditioned on survival, is given by

Pr
(
m̂w = m | X̄

)
=

Pr
(
Sm−1D

)

Pr
(
X̄m

) =
(1− (w + 1) δt)m−1 wδt

(1− δt)m
(30)

=

(
1− (w + 1) δt

1− δt

)m−1

· wδt

1− δt
(31)

. e−wδt(m−1) wδt

1− δt
(32)

where the last inequality follows from a Taylor series comparison of (1− (w + 1)δt) /1− δt under
the assumption that δt < 1. So, the expectation value of m̂w is

E

(
m̂w | X̄

)
=

∞∑

m=1

m · Pr
(
m | X̄

)
.
wδt · ewδt

1− δt

∞∑

m=1

m · e−mwδt =
wδt

(1− δt) (1− e−wδt)
2 (33)
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Finally, the full expectation value is given by

E

(
m̂ | X̄

)
.

1

1− δt

n∑

w=1

wδt

(1− e−wδt)
2 (34)

Next, using the variable substitution x = wδt, dx = δt, we may turn the above sum into an
approximate integral. In fact, the integrand x/(1 − e−x)2 is monotonically decreasing, so the sum
is upper bounded by

E

(
m̂ | X̄

)
.

δt

(1− δt) (1− e−δt)
2 +

1

δt(1 − δt)

nδt∫

δt

x

(1− e−x)2
dx (35)

.
4

(1− δt) δt
+

1

δt(1− δt)

nδt∫

δt

4

x
dx =

4

(1− δt) δt
+

4

δt(1− δt)
log(n) (36)

where we used the trick that since x/2 and 1− e−x are both monotonically increasing, and x/2 <
1−e−x for x = 0, 1, then it follows that x/2 < 1−e−x for all x ∈ [0, 1]. In fact, a tighter bound may
be obtained by replacing 2 by e/(e − 1) ≈ 1.58, which yields a scaling of E

(
m̂ | X̄

)
. 2.503

δt log n.

Finally, the expected survival probability is Pr
(
X̄
)
& e−δt· 2.503

δt
logn = 1

n2.503 , which is polynomial in
n. Therefore, applying this algorithm for 1

δt log n with δt = Θ(n−1), yields a polynomial probability
of success. Repeating for at most n2.503 trials amplifies the success probability to a constant. So,
the total time complexity is On3.503 log n, which is efficient in the input size n.

In Fig. 2 below, numerics of the continuous-time process (see Eq. 27) confirm that the total
time indeed scales as log n.

Figure 2: Plot of the input size n vs. total time for success (determined by the time taken for a
polynomial fraction of walkers to reach the global minimum). Note that the continuous-time process
does not contain the polynomial factors; those arise from discretization into small timesteps δt of
order . 1/n.
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8.2.2 Spike

In the previous section, we showed that Bush is a problem instance where classical bang-bang
algorithm (BBSA) can outperform a classical quasistatic algorithm (SA) exponentially. While this
suffices to show the polynomial inequivalence of SA and BBSA, it is nonetheless interesting to
explore further examples where this is the case. The Spike problem, as presented in 21, is the
second instance where BBSA can exponentially outperform SA and QAO. Since the separation is
sensitive to details such as the shape of the spike, we refer the reader to Appendix B for further
discussion.

8.3 QAOA

Lastly, we will show that one round of QAOA (or QAOA1) efficiently finds the minimum of the
instances Bush and Spike. In fact, as discussed later in this section, QAOA1 solves a more general
class of symmetric instances that includes the Spike (and with some more analysis, the Bush)
example. This is one of the main results of the paper, given in Theorem 1.

8.3.1 Spike

One of the key features of this instance is that the spike has exponentially small overlap with the
initial state |+〉⊗n. Intuitively, this implies that the state does not “see” the spike, and should
therefore behave as if evolving under a pure Hamming ramp. We state this as the following lemma:

Lemma 1. Let c(w) be a Hamming-symmetric cost function on bitstrings of size n, and let p(n) ∈
[0, 1] be a problem size-dependent probability. Suppose c(w) = r(w) + s(w), where r, s are two
functions satisfying the following:

1. minw c(w) = minw r(w).

2. There exist angles β, γ such that QAOA1 with schedule (β, γ) minimizes r(w) with probability
at least p(n).

3. If the initial state is |ψ0〉 =
∑

w Aw|w〉, then s(w) overlaps weakly with |ψ0〉 in the sense that

n∑

w=1

4|Aw|2 sin2
(
γs(w)

2

)

≤ o(p(n))

Then, QAOA1 with schedule (β, γ) minimizes c(w) with probability at least p(n)− o(p(n)).

For the Spike instance, we decompose the cost into a ramp term and a spike, c(w) = r(w)+s(w).
First, we compute the success probability of QAOA1 on only the ramp term r(w). This potential
may be written as

R =
n∑

w=0

w|w〉〈w| =
n∑

i=1

1− Zi

2
=
n

2
1− 1

2

n∑

i=1

Zi (37)

which is a 1-local operator on qubits, just like B. It can be seen that the protocol simply applies
a rotation from the |+〉 state to the |0〉 state on each qubit via a Z/2 rotation followed by an
X rotation, and succeeds with probability 1. The angles can be read off from the Bloch sphere:
γ = 2 · π/4 = π/2, and β = π/4.
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Then, it follows from Lemma 1 that the effect of the spike s(w) under QAOA1 is negligible if
∑

w 4 sin2(γs(w)/2)|Aw |2 is small, where Aw are amplitudes of the initial state in the symmetric
basis. But this sum may be bounded as

n∑

w=0

4 sin2(γs(w)/2)|Aw |2 =
1

2n−2

n/4+na/2
∑

w=n/4−na/2

sin2(γnb/2)

(
n

w

)

(38)

≤ 1

2n−2

n/4+na/2
∑

w=n/4−na/2

(
n

w

)

= 4

n/4+na/2
∑

w=n/4−na/2

B(w;n, 1/2) (39)

where B(w;n, 1/2) is a binomial term corresponding to the probability of n tosses of a fair coin
returning exactly w heads. Now, we may use known bounds on tail distributions such as Hoeffding’s
inequality, and we finally have

n∑

w=0

4 sin2(γs(w)/2)|Aw |2 = 4

n/4+na/2
∑

w=n/4−na/2

B(w;n, 1/2) = o(1) when a < 1 (40)

Then, applying Lemma 1, we conclude that, for a spike with a ∈ [0, 1) and arbitrary b, QAOA1
with angles (π/4, π/2) finds the global minimum with probability polynomially close to 1.

This QAOA1 protocol is asymptotically successful for any (a, b) chosen from the set [0, 1)×R.
In practice, finite n instances will show effects of the finite overlap of the initial state with the spike
at a close to 1. But even in this regime, the barrier height is essentially irrelevant, since it appears
in the argument of a sinusoid and may only affect the bounds in Eq. 38 by a constant.

8.3.2 Bush

The Bush instance is a quasi-symmetric potential, since it depends on the value of the central bit.
In the z0 = 1 sector, the potential is a constant, while in the z0 = 0 sector, it is a ramp. So, in
analogy with Eq. 37

C = |1〉〈1| ⊗ 1+ |0〉〈0| ⊗
(

n

2
1− 1

2

n∑

i=1

Zi

)

(41)

For ease of analysis, separate the mixing operator into the mutually commuting peripheral terms
and central term:

B(β) = e−iβB = (cos β10 − i sin βX0)
n∏

i=1

(cos β1i − i sin βXi) ≡ B0Bi

As before, the QAOA protocol implements one Z rotation (operator C(γ) = e−iγC) followed by an
X rotation (operator B(β)). Since the Bush potential contains a ramp in the relevant sector, we
will try the protocol used for the Spike instance, β = π/4, γ = π/2.

The Z-rotation transforms the initial state (on the peripheral bits) into the +Y eigenstate,
|+〉⊗n → 1√

2n
(|0〉+ i|1〉)⊗n. So, the full state transforms as

1√
2
|1〉 ⊗ |+〉⊗n +

1√
2
|0〉 ⊗ |+〉⊗n −−−−→

C(π/2)

−i√
2
|1〉 ⊗ |+〉⊗n + |0〉 ⊗ 1√

2n+1
(|0〉+ i|1〉)⊗n
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Next, Bi transforms the state to

−i√
2
|1〉 ⊗ |+〉⊗n + |0〉 ⊗ 1√

2n+1
(|0〉+ i|1〉)⊗n −−−−→

Bi(π/4)

−ie−inπ/4

√
2

|1〉 ⊗ |+〉⊗n +
1√
2
|0〉 ⊗ |0〉⊗n

and finally, the central mixing term B0 gives (with ω := e−inπ/4)

−iω√
2
|1〉 ⊗ |+〉⊗n +

1√
2
|0〉 ⊗ |0〉⊗n −−−−→

B0(π/4)

−i
2
|1〉 ⊗

(
ω|+〉⊗n − |0〉⊗n

)
+

1

2
|0〉 ⊗

(
ω|+〉⊗n + |0〉⊗n

)

which is the final state |ψf 〉. The success probability is then

Pr(success) = |〈0|ψf 〉|2 =
1

4
|1− ω〈0|+〉n|2 = 1/4 +O(1/2n) (42)

which is a finite constant and may be boosted polynomially close to 1 with a logarithmic number
of repetitions.

8.3.3 Other symmetric instances

The success of QAOA1 on the two chosen instances is in part due to the fact that only the potential
on the support of the initial state affects the state dynamics. This feature is absent from the other
algorithms studied here. Notably, for the adiabatic algorithm on Spike, while it is true that the
spectral gap is minimized at the same point u∗ as for the ramp without the spike (see [28]), the size of
the gap itself depends on the spike parameters, so that in particular, when the spike is sufficiently
broad or tall, the gap becomes exponentially small in n. In stark contrast, the performance of
QAOA1 is independent of the gap parameters, since the state has vanishing support on the spike.

Now, we will use this feature to give conditions under which a symmetric cost function may
be successfully minimized by QAOA1. When the cost can be decomposed into a linear ramp and
a super-linear part that has small support on the initial state, one may ignore the super-linear
terms and treat the problem as a linear ramp. Suppose we have a Hamming-symmetric cost
function c(w̃) = c0+ c1w̃+ c2w̃

2 + · · · , written as a Taylor series in w̃, the shifted Hamming weight
w̃ = w− n/2 (which we henceforth replace with w). Separate the function into a linear part and a
super-linear part, c(w) = r(w) + q(w), where

r(w) = c0 + c1w (43)

s(w) = c2w
2 + · · · (44)

Under Lemma 1, if it is the case that s(w) overlaps weakly with the initial state (which is roughly
supported on weights n/2±O (

√
n)), and if the addition of s(w) does not change the global minimum

of r(w), then such a cost function c(w) can be optimized using a “ramp protocol” for r(w), as was
done for the Spike problem in Sec. 8.3.1 (provided the slope of the ramp |c1| ≥ O(1/poly(n))).

However, in this case we can do better (Theorem 1 below): even if the global minimum of c(w)
does not coincide with that of r(w), the ramp protocol may be suitably modified to ensure the
successful minimization of c(w). Suppose minw c(w) = w∗. For the ramp r(w) = c0 + c1w, the first
step of QAOA is evolution under C(π/(2|c1|)). For c(w), we modify γ to γ∗ (to be determined),
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and keep β = π/4 unchanged. Then, the final state may be written as

|ψf 〉 =
n⊗

i=1

(sin (γ∗/2) |0〉 + cos (γ∗/2) |1〉) (45)

=

n∑

w=0

(sin (γ∗/2))n−w (cos (γ∗/2))w
(
n

w

)1/2

|w〉 (46)

Then, by inspection, γ∗ must maximize the success probability, or equivalently, the function
(sin (γ∗/2))2(n−w∗) (cos (γ∗/2))2w

∗

. An elementary calculation yields that

γ∗ = arccos

√

w∗

n
(47)

Finally, the success probability is

Pr(success) =
(w∗)w

∗

(n − w∗)w
∗

nn

(
n

w∗

)

= O(1) (48)

by Stirling’s approximation. So, QAOA1 with β = π/4, γ = γ∗ successfully optimizes the cost
function c(w). Finally, we note that if the minimum w∗ of c is unknown, the above QAOA1
protocol may be carried out for all n + 1 possible values of w∗ until success, which is at most a
factor O(n) overhead. Therefore, we have just proven the following result:

Theorem 1. When c(w) = r(w) + s(w) and r is linear in w with slope Ω(1/poly(n)), and s(w)
satisfies the weak overlap condition 3 in Lemma 1, c(w) can be successfully minimized via QAOA1
with at most a polynomial number of classical repetitions.

There is an intuitive picture for the feature of QAOA discovered in Theorem 1 above. As has
been observed before [31, 14], the low energy spectrum of the mixing operator B can be mapped to
a suitable harmonic oscillator that treats the Hamming weight w as the position variable. Under
this mapping, the initial state |+〉⊗n acts as the vacuum state wavepacket, and a linear ramp with
slope a, C = a

∑

w w|w〉〈w| is the analogous position operator. We may then qualitatively work out
the action of QAOA on the initial wavepacket. The first round, evolution under C, displaces the
vacuum to a state with finite momentum p = aγ. Then, evolution under the harmonic oscillator
Hamiltonian B for time β = π/2 rotates the coherent state so that the final state is one that is
displaced in w. So, in a single round of QAOA, the wavepacket gains momentum and propagates
to a new location in hamming weight space. (This feature has been recently noted in [11].) While
the above method recovers the QAOA1 protocol qualitatively, it gets the angle γ wrong by a factor
2/π. This is due to the curvature of the phase space. In fact, the wavepacket is more accurately
described by a spin-coherent state, in which the conjugate operators are the total spin operators Sx
and Sz. It remains to be seen how this (spin-)coherent state picture may be employed to understand
the behavior of QAOA on other (especially non-Hamming symmetric) instances. The simplicity of
this description suggests a classical algorithm which simulates the momentum transfer and jump
operations of the wavepacket via local gradient measurements of the cost function. This could give
rise to a new, quantum-inspired classical search heuristic that escapes local minima more efficiently
than existing classical methods.
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ported in part by the U.S. Department of Energy, Office of Science, Office of Advanced Scientic
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Appendices

Appendix A The control framework

Given a dynamical equation depending on additional parameters (which we call the controls), what
properties does a control protocol which optimizes a given cost function satisfy? The relevance of
this question extends across many fields where optimal control (with respect to a cost function) is
desired. In fact, it has been observed [1, 2] that the optimal control problem also applies to heuristic
optimization algorithms, where the controlled dynamics are described precisely by Schrödinger
evolution under the annealing Hamiltonian, and the cost function is given by the energy of the final
state.

Consider a first-order differential equation describing the dynamics of an n-dimensional real
vector x ∈ Rn, and controlled by m control parameters which we denote by the vector u ∈ Rm:

ẋ(t) = f(x(t), u(t)) (49)

The functional form f may be very general; we only assume that f is “Markovian” (i.e., depends
only on the current state (x(t), u(t))), and that there is no explicit time-dependence. Typically, it
is further assumed that the control u inhabits a fixed, compact subset, u ∈ U ⊂ R

m. The domain
U represents a feasible set of controls.

In order to talk about optimal control, we must first specify a notion of cost. In a real problem
such as optimizing the trajectory of a spacecraft, the cost might be expressed in terms of time,
amount of fuel used (i.e. a trajectory-dependent cost), and the distance of the final position from
the target location (i.e., a final state cost). Thus, the cost function may generally be expressed as
a (weighted) sum of three costs:

1. the total time for the process, T =
T∫

0

1dt

2. the running cost, which is given as an integral over the running time,
T∫

0

L (x(t), u(t), t))dt

3. the terminal cost, which is a final state-dependent function K(x(T )).

The full cost function may be expressed in the general form

J = K(xfinal) +

∞∫

0

L (x(t), u(t), t) dt (50)

where J is a functional of the control schedule u(t) and the dynamical path x(t). The objective is to
find the control function u(t), over all piecewise continuous functions u : R≥0 → U , that minimize
the overall cost, i.e. argminu(t) J(u). This is the so-called infinite time horizon formulation of the
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problem. Alternatively, one can fix the total time for the protocol T to be finite. Then, we are
asked to minimize over all piecewise continuous functions u : [0, T ] → U the cost

J = K(x(T )) +

T∫

0

L (x(t), u(t), t) dt (51)

A wealth of literature in classical control theory discusses the question of optimal control, and
we emphasize its potential applicability in the setting of designing efficient heuristic optimizers,
both classical and quantum. Here, we will focus on one result, the Pontryagin Minimum Principle
(PMP), which imposes necessary conditions for a control protocol to be optimal using the so-called
control Hamiltonian description.

The control Hamiltonian H is a classical functional describing auxiliary Hamiltonian dynamics
on a set of variables given by x and corresponding co-state (or conjugate momentum) variables p.
The conjugate momenta depend on the cost function J in Eq. 51, and are introduced as Lagrange
multipliers that impose the equations of motion for each coordinate of x. The full cost function (at
time t), which includes the cost terms in J and the constraints, is given by the control Hamiltonian
H.

H := L(x, u)− p · f(x, u) (52)

Then, PMP states that the optimal control is one which minimizes the control Hamiltonian at all
times. That is,

H (x(t), p(t), u∗) ≤ min
u∈U

H (x(t), p(t), u) (53)

In the special case when H is linear in the control u, the above minimality condition is satisfied
only if the control lies on the boundary of the feasible set U . This implies that optimal trajectories
are bang-bang, i.e., the controls only take their extremal values. The optimal point(s) on the
boundary are determined by the intersection of the constant-H hyperplanes in control space with
the set boundary. However, an important exception arises when the derivative of H with respect
to u vanishes over a finite interval. In this case, the control becomes singular, i.e., its optimal value
no long lies solely on the boundary of U .

The control framework described here covers many heuristic optimization algorithms, and we
will fix some notation to suit this setting. The dynamical vector of interest will a state |ψ〉 (quan-
tum) or |ψ) (classical), and the generator of dynamics will be a controlled linear operator

H(u) =

m∑

i=0

uiHi ≡ u ·H (54)

where u and H are vectors with components ui and Hi respectively. We assume that individual
Hamiltonians Hi are time-independent, and only their overall strength, controlled by the coefficient
ui(t), is time-dependent. We will fix the range of all ui to [0, 1].

Appendix B Bang-bang simulated annealing on the Spike

For Spike, the strategy used for Bush, namely, run randomized gradient descent (zero-temperature
SA) from start to finish, fails due to the presence of a barrier. So, if we run gradient descent for
time O(n) per walker, then we are left with a distribution sharply peaked at the false minimum.
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We may now attempt to diffuse across the barrier. For a sufficiently wide barrier, this strategy will
again fail, since the diffusion rate across the spike is exponentially small in na. However, we instead
turn on diffusion for a short time, so that a constant fraction of the walkers “hop on” the barrier,
while the rest diffuse away from the barrier. Then, we turn on randomized gradient descent again
until the finish. The fraction of walkers on the barrier are now guaranteed to walk to the global
minimum in time O(n), as the slope is positive.

So, it can be seen that for the spike problem, an algorithm with the same structure as SA
but a schedule that is designed without the adiabaticity constraint, successfully finds the global
minimum, and thus exponentially outperforms SA (and QAO for certain parameter regimes, see
Table 1) on the same instance. It should be noted that the success of BBSA depends sensitively
on the shape of the spike. In particular, we expect success (i.e. at least 1/poly(n) walkers reach
the global minimum) when the part of the spike with positive slope (i.e. the “uphill” portion) has
width O(log n).

Appendix C Proof of Lemma 1

Let C = e−iγ
∑

w
c(w)|w〉〈w| and let R,S be defined analogously with the cost terms r(w) and s(w),

where c(w) = r(w) + s(w). R and S are mutually commuting, so C = RS, and the first step of the
QAOA1 protocol may be written as

C|ψ0〉 = RS|ψ0〉 = R
n∑

w=0

e−iγs(w)Aw|w〉 = R|ψ0〉+R
n∑

w=0

(

e−iγs(w) − 1
)

Aw|w〉 (55)

After the mixing operator B = e−iβB is applied, the final state is

|ψf 〉 = BR|ψ0〉+ BR
n∑

w=0

(

e−iγs(w) − 1
)

Aw|w〉 (56)

The overlap with the global minimum |ψ∗〉 is

〈ψ∗|ψf 〉 = 〈ψ∗|BR|ψ0〉+ 〈ψ∗|BR
n∑

w=0

(

e−iγs(w) − 1
)

Aw|w〉 (57)

=⇒ |〈ψ∗|ψf 〉 − 〈ψ∗|BR|ψ0〉| = |〈ψ∗|BR
n∑

w=0

2eiγs(w)/2−iπ/2 sin

(
γs(w)

2

)

Aw|w〉 (58)

Now, p = |〈ψ∗|BR|ψ0〉|2, and let p∗ = |〈ψ∗|ψf 〉|2, the success probabilities of QAOA1 on r(w) and
the full cost function c(w), respectively. We wish to show that p∗ is at least p − o(p). Using the
triangle inequality |x| − |y| ≤ |x − y| on the left side of Eq. 58, and Cauchy-Schwarz inequality
|〈u|v〉| ≤ |〈u|u〉|1/2|〈v|v〉|1/2 on the right side, we get the following:

√
p−

√

p∗ ≤
n∑

w=1

4|Aw|2 sin2
(
γs(w)

2

)1/2

=
√
q (59)

=⇒ p∗ ≥ p
(

1−
√

q/p
)2

= p (1− o(1))2 = p− o(p) (60)

which proves the lemma.
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