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Analog quantum algorithms are formulated in terms of Hamiltonians rather than unitary gates
and include quantum adiabatic computing, quantum annealing, and the quantum approximate op-
timization algorithm (QAOA). These algorithms are promising candidates for near-term quantum
applications, but they often require fine tuning via the annealing schedule or variational param-
eters. In this work, we explore connections between these analog algorithms, as well as limits in
which they become approximations of the optimal procedure. Notably, we explore how the optimal
procedure approaches a smooth adiabatic procedure but with a superposed oscillatory pattern that
can be explained in terms of the interactions between the ground state and first excited state that
effect the coherent error cancellation of diabatic transitions. Furthermore, we provide numeric and
analytic evidence that QAOA emulates this optimal procedure with the length of each QAOA layer
equal to the period of the oscillatory pattern. Additionally, the ratios of the QAOA bangs are de-
termined by the smooth, non-oscillatory part of the optimal procedure. We provide arguments for
these phenomena in terms of the product formula expansion of the optimal procedure. With these
arguments, we conclude that different analog algorithms can emulate the optimal protocol under
different limits and approximations. Finally, we present a new algorithm for better approximating
the optimal protocol using the analytic and numeric insights from the rest of the paper. In practice,
numerically, we find that this algorithm outperforms standard QAOA and naive quantum annealing

procedures.
I. INTRODUCTION

Analog quantum algorithms come in a variety of forms,
from Adiabatic Quantum Computing @] and Quantum
Annealing ﬂﬂ] to variational algorithms such as the quan-
tum approximate optimization algorithm (QAOA) [3].
Analog quantum algorithms are particularly relevant in
the Noisy Intermediate Scale Quantum device M] era,
where they are capable of running effectively on small-
scale devices.

All these analog quantum algorithms use the same ba-
sic ingredients but combined in different ways that ob-
fuscate the connections between these algorithms. Adi-
abatic Quantum Computing slowly changes the system
from an initial Hamiltonian, whose ground state you start
in, to a final Hamiltonian, whose ground state you want
to know. By going slowly, Adiabatic Quantum Comput-
ing can rely on the adiabatic theorem ﬂa] which ensures
this state transfer so long as the ramp is smooth and
monotonic and the runtime scales as an inverse polyno-
mial of the spectral gap. Quantum Annealing is a broader
algorithm that allows for non-adiabatic effects, and this
has recently led to the field of diabatic quantum anneal-
ing [1] that explicitly uses excitations above the ground
state to solve problems faster, the difficulty being how to
control and utilize these excitations.
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QAOA is based upon a different, variational framework
where the Hamiltonian evolution obeys bang-bang struc-
ture at all times. Here, the quantum optimization prob-
lem is solved by optimizing the lengths of Hamiltonian
pulses in a hybrid, quantum-classical loop. Not much is
known about how QAOA relates to other analog quan-
tum algorithms and how its performance scales with the
number of variational parameters. While originally mo-
tivated by a Trotterization of Adiabatic Quantum Com-
puting and Quantum Annealing, QAOA performs quite
differently in practice. The numerical results of ﬂE, ]
show that QAOA variational parameters fall along cer-
tain smooth curves as the depth of the circuit increases.
These curves superficially resemble a Trotterization of an
annealing path, but the size of the Trotter steps is insen-
sitive to the circuit depth, invalidating standard Trotter
error arguments. There is also numerical evidence B]
that these curves, when interpreted as annealing paths,
exhibit properties of diabatic speedups.

More recently, techniques from optimal control theory
l%] have been applied to analog quantum algorithms m

|, specifically in the context of the variational approach
of QAOA. These optimal control techniques were applied
to the more generalized problem of analog quantum al-
gorithms in Ref. [15]. This optimal protocol takes on
a bang-anneal-bang form with guaranteed bangs at the
beginning and end that become vanishingly smaller as
the allowed time for the protocol increases. In the mid-
dle, the protocol often takes on an annealing-like form
with a smooth control function. We refer to this opti-
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mized protocol as an optimal curve/protocol throughout
the paper.

This paper focuses on analytically proving the connec-
tions among all the analog algorithms mentioned previ-
ously. First, we show that QAOA emulates the optimal
curve, acting as a large-time-step Trotterization of this
curve. Second, we show that, in the limit of long time,
the optimal curve resembles an optimal adiabatic path
similar to the annealing schedule of Roland and Cerf [26],
which was optimized to ensure adiabaticity with respect
to the instantaneous spectral gap. Therefore, the asymp-
totic curves discovered for QAOA in Refs. [§, 9] are de-
rived from the optimal adiabatic path of the system. In
the short time and low circuit depth limit, the optimal
curve and QAOA are still connected and begin to resem-
ble excited state computation seen in diabatic quantum
annealing [7].

These results rely on the fact that the optimal sched-
ules have large annealing-like regions, which ﬂﬁ] showed
are common in optimal curves. In practical terms, the re-
lationship between QQAOA and the optimal curves means
that QAOA can safely be scaled up by bootstrapping, or
using the results of lower circuit depth optimization to
produce a good guess for the variational parameters in a
higher circuit depth setting. This bootstrapping method
was suggested by Refs. B,g@], and our results in this pa-
per seek to understand why this method is valid. This
relationship also means that QAOA parameters can be
used to form an initial ansatz for the optimal schedule,
which in general has better performance than QAOA.
Furthermore, our results contradict the common design
philosophy that annealing paths should be monotonic
(see reverse annealing as a notable exception [17, [18]).
Monotonicty is a holdover from the infinite-time adia-
batic limit @], and a monotonic schedule improves the
energy of the state over doing nothing HE] However,
our results show that adding an oscillation to the anneal-
ing schedule, with a frequency dependent on the spectral
gap, improve performance by coherently cancelling the
error due to leakage to excited states. The amplitudes of
these oscillations vanish in the infinite-time limit.

Finally, we present a new practical algorithm for ap-
proximating the bang-anneal-bang optimal control proto-
col. This algorithm uses the analytic and numeric results
from the rest of the paper to create an ansatz for the form
of the optimal protocol. This ansatz has a small number
of variational parameters, and the number of parameters
can be taken to be independent of system size or scaled
up with system size depending on the available resources.
We demonstrate that this new ansatz outperforms both
QAOA and a naive monotonic annealing schedule.

We begin in Section [Tl by reviewing the relevant algo-
rithms and providing background information on them.
Section [Tl provides the original numerical motivation for
this work, presenting the QAOA asymptotic curves of
B, ] and the numerical connection between these curves
and the optimal schedules of ﬂﬁ] In order to prove this
connection, our analytics are broken up into two parts.

The first analytic part in Section[[Vlrelates to the optimal
curves themselves, showing how the oscillatory behavior
arises. This section explores the properties of the initial
and final bangs, which serve to spread the population
out into more than just the ground state and then bring
it back together, with the intermediate annealing region
providing a nearly-adiabatic procedure. The oscillations
result from properties similar to counter-diabatic driving
terms from shortcuts to adiabaticity ME] The sec-
ond analytic part in Section [V] presents work involving
product-formula expansions. We show that, if the un-
derlying annealing curve consists of a smooth slow curve
and a fast small oscillation, a product formula of that an-
nealing curve gets a reduction in its error bounds when
the product formula step sizes match the period of the
oscillations. This reduction, combined with potential co-
herent error effects and additional optimization, can help
explain the step size of QAOA and how it relates to the
optimal curves. We present our new bang-anneal-bang
ansatz algorithm in Section [VIl Finally, in Section [VII]
we summarize and review the implications and caveats of
our work, providing possible directions for future study
and development.

II. THE ALGORITHMS

All of the analog quantum algorithms considered here
fit within a linear control framework described by the
Hamiltonian

H(t) =u®)B+ (1 —ut)C. (1)

The Hamiltonian B is often described as the “mixer”
and encodes quantum mixing (e.g. a uniform transverse
field on qubits). C is known as the “problem” Hamilto-
nian and encodes the optimization task (e.g. a diagonal
Hamiltonian with the target cost function along the di-
agonal). In all examples, the initial state of the system
is taken to be the ground state of 3, and the target state
of the system is taken to be the ground state of C'. The
control function u(t) : [0,t¢] — [0, 1] specifies the time
evolution protocol of the algorithm over its total runtime
ty. The analog algorithms studied here each come with
a different design ansatz for this control function.

A. Adiabatic Quantum Computing

Adiabatic Quantum Computing was originally pro-
posed to solve combinatorial optimization problems ﬂ]
The function u(t) is taken to be a monotonic function,
starting at w(0) = 1 and ending at u(t;) = 0. If the
change in u(t) is slow enough, the quantum adiabatic the-
orem [6] guarantees adiabaticity, which means that the
system will stay in the same relative eigenstate through-
out the evolution. Notably, this is usually employed to
ensure that a system starting in the ground state of B at
t = 0 will evolve into the ground state of C' at t = t.



This necessitates that the Hamiltonian, H(t), main-
tains a non-zero spectral gap throughout, with some ex-
ceptions (e.g. ground state degeneracy for all ¢ or just at

t=ts) [1]. A commonly cited condition for adiabaticity
is that [1/
A t
ming A

where A(t) is the spectral gap of the Hamiltonian at
time ¢. This is a simplified condition that often works in
practice, and its formal version, while more complicated
ﬂa], depends roughly on the same parameters, potentially
with worse exponents.

Therefore, a large part of the analysis of adiabatic
quantum algorithms involves spectral theory to deter-
mine the size of A(¢). During most of the anneal, the
spectral gap is usually independent of n, but during
avoided level crossings, which often correspond to phase
transitions, the gap can close polynomially or exponen-
tially with n. In hard optimization problems, this spec-
tral gap is exponentially small in the vicinity of avoided
level crossings.

Often the monotonic annealing schedule, u(t), is taken
to be a linear ramp (or some other hardware-determined
shape), but the ramp can be optimized to slow down
when the gap is small and speed up when the gap is
large. This optimization, originally proposed by Roland
and Cerf m], is necessary to recover the Grover quadratic
speed-up for unstructured search, and there is good ev-
idence that optimization of the schedule in general can
lead to a similar quadratic speed-up over unoptimized
schedules [35]. The optimized Roland and Cerf sched-
ule is specific to the unstructured search problem, but
it can be generalized by methods such as the quantum
adiabatic brachistochrone ﬂﬂ] One problem with these
optimized schedules is that they require full knowledge of
the spectral gap to construct. The unstructured search
problem has the same spectral structure in all problem
instances, but knowledge of the spectral gap is generally
hard to find @ priori. Another problem of such optimized
schedules is that, if the minimal spectral gap is exponen-
tially small, they might require realistically unachievable
exponential precision [36].

B. Quantum Annealing

Quantum Annealing was originally proposed E] before
Quantum Adiabatic Computing and was justified not by
the adiabatic theorem, but instead by comparison to clas-
sical thermal annealing. In practice, the setup of An-
nealing is roughly the same as Adiabatic, with «(0) = 1,
u(ty) = 0, and a smooth, usually monotonic ramp in
between.

The relative definitions of Annealing and Adiabatic are
slightly ambiguous and vary throughout the field. In this
paper, we will use one of the more common definitions

of Quantum Annealing as a generalization of Adiabatic
Quantum Computing, with Adiabatic being a subclass
of Annealing. Whereas Adiabatic Quantum Computing
requires adiabaticity, meaning the state of the system
must always track the ground state, Quantum Anneal-
ing allows for either non-adiabatic effects or adhering to
adiabaticity. These non-adiabatic effects might be due to
thermal noise or simply going too fast (in the present pa-
per, we will consider only unitary dynamics, so there will
be no thermal noise). These non-idealities could mean
that the final state is an excited state that is deemed
good enough for practical purposes.

It is also possible to utilize the sped up behavior
and engineer the dynamics to depopulate the ground
state and then repopulate it ﬂﬁ, @], utilizing the power
of higher excited states for intermediate computational
steps. This is the basis of diabatic quantum annealing
[7]. While diabatic algorithms show promise, it is cur-
rently unclear how to efficiently engineer the desired ef-
fects. This paper could be interpreted as addressing this
question, and we point interested readers to Section [VI]
where we describe a practical algorithm for engineering
a useful diabatic evolution.

C. Quantum Approximate Optimization Algorithm
(QAOA)

While QAOA is sometimes described in the digital
quantum circuit framework, it is ultimately an analog
quantum algorithm. The control function is no longer
smooth but instead takes on a pulsed, bang-bang form
where u(t) can only equal 0 or 1, meaning we are only ap-
plying either B or C but not linear combinations of them.
The original [3] formulation of QAOA is best described
using unitaries where the system starts in an initial state
|2(0)) (the ground state of B) and ends at a final time,
ty, in the state

P

jz(tf)) = [H e

o ] 2(0)) - 3)
i=1
The (positive) times 5 and ﬁ , also known as angles, de-
scribe how long to apply each bang, with the label  re-
ferring to evolution times under C' and 3 referring to evo-
lution times under B by convention. The total runtime
for this algorithm is ¢ty = ¥, (; + 3;). The number of
layers in QAOA, p, is usually fixed, while the angles ~;
and f3; are allowed to vary freely.

As a hybrid variational algorithm, QAOA uses a clas-
sical optimizer to optimize the angle parameters and a
quantum computer to sample and estimate the final en-
ergy (E) = (z(t;)|Clz(ts)). The goal is to prepare a
state that is close to the target state by finding the ~;
and f; that minimize (F).

As it was originally proposed, QAOA was conceived as
a generalized discretization of Quantum Annealing. In-
deed, a Suzuki-Trotter expansion of an Annealing sched-



ule would result in a bang-bang pattern similar to QAOA.
However, numerical results ﬂg,g@] have shown that the op-
timal angles do not approach a Trotterization. This is
evident from the observation that the ideal bang lengths
remain roughly constant as p is increased, whereas under
Trotterization, they become vanishingly small as p — oc.
A key goal of the current paper is to explain this phe-
nomenon and describe this large-p behavior.

D. Optimal Schedules

In a previous study ﬂﬁ], the analog quantum algorithm
problem was analyzed through the lens of optimal control
theory. We asked what properties an optimal u(t) must
have in order to produce the lowest possible (E) within
a given amount of time #y.

The resulting schedule takes on a form with a finite-
length v = 0 bang at the beginning and a finite-length
u = 1 bang at the end. Our analytics suggested multi-
ple possibilities in the middle, but in all numerics tested
(mostly focusing on the Ising model with some additional
data for the Heisenberg model), the middle region was
dominated by a smooth non-monotonic annealing region.
The form of this annealing schedule was not studied ex-
tensively, and the exact shape of this region, as well as
a heuristic picture of the evolution, is one of the main
contributions of the current paper.

The initial and final bangs in such a bang-anneal-bang
procedure are guaranteed to decrease as t; increases and
vanish in the limit ¢; — oo [15]. In fact, this corresponds
to recovering the adiabatic limit. Our results in the cur-
rent paper can be used to interpret the initial and final
bangs as exciting the system into a diabatic annealing
regime.

III. NUMERICALLY COMPARING OPTIMAL
CURVES AND QAOA

Our main results are inspired by two separate pieces
of numerical evidence. The first is the asymptotic large-
p structure of QAOA, as has already been presented in
Refs. ﬂé, ] The second is the asymptotic large-t y behav-
ior of the optimal curves. This behavior of the optimal
curves was explored partially in the Appendices of the
previous paper ﬂﬁ], but here we formalize those results
and connect them to the behavior of QAOA.

A. QAOA Curves

One of the primary sources of excitement with QAOA
is the ability to predict the v; and §; from similar problem
instances. It has been observed [39] that QAOA angles
give rise to similar performance across similar problem
instances. More relevant for our purposes, when con-
sidering a fixed problem instance, the optimized QAOA

angles form a certain pattern, and the QAOA protocol
approaches an asymptotic continuous limit with increas-
ing number of layers p.

Specifically, suppose that the optimal QAOA angles for
a given p are given by ; and ;, then we can construct
continuous functions v,(s) and B,(s) for s € [0,1] such

that
i1
= Vi 4
w(27) = (@

5 (1) - o 5)

p—1

As p increases, it has been noted numerically ﬂE, ] that
these functions v,(s) and §,(s) converge to asymptotic
functions 7(s) and S(s) that become independent of p in
the limit p — oo.

These asymptotic curves should not be confused with
a simple Suzuki-Trotter expansion of some underlying
annealing curve. In order to guarantee an accurate ap-
proximation of a Hamiltonian time evolution by a Suzuki-
Trotter product formula, the time steps are required to be
of vanishing order. However, the asymptotic curves pre-
scribe angles of constant order, so if they were interpreted
as a simple Suzuki-Trotter expansion, the expected error
would be non-vanishing as the number of QAOA rounds
goes to inifinity.

It is possible to construct an annealing curve from
the asymptotic QAOA curve, as done in Zhou et al. [].

% as an anneal-

Specifically, they define u(s) =
ing curve, which is well-motivated in part because it is
commonly seen that 5(s) is dominant at the beginning
and v(s) is dominant at the end (the reason for this is
connected to the asymptotic shape of the optimal curves
that QAOA is emulating as we discuss in Sec. [[V]). The
resulting annealing curve captured a well-known effect
from diabatic quantum annealing, so-called diabatic cas-
cades ﬂﬂ], providing an empirical link between QAOA
and diabatic quantum annealing.

An example of these asymptotic QAOA curves is given
in Fig. [l These numerics indicate that there is some
asymptotic curve for each problem instance that QAOA
angles are converging to. Notably, this means that
QAOA can bootstrap itself up, using lower p parameters
to create good guesses for what the higher p parameters
are.

B. Bang-Anneal-Bang Oscillations

The new numerics that inspired this current study
involve the bang-anneal-bang behavior of the optimal
curves when compared to QAOA. The runtime of a
QAOA protocol can be defined in terms of its variational
parameters as

p

tr=> (vi+B) (6)

i=1
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FIG. 1: This plot shows the QAOA variational parameters
for a single problem instance at several different values of p.
Plotted are the v, 8i, and u; = The z-axis is the

normalized QAOA layer :;11.
p (starting at p = 10), and the darker curves are for higher
p (ending at p = 30). These curves do vary slightly, but es-
pecially at higher p, they settle into some smooth asymptotic
curve. This data was gathered for B being a transverse field
and C being a randomized Ising model with all-to-all cou-
plings drawn at random uniformly from the range [—1, 1] on
n = 8 qubits (exact couplings given in Appendix [C]).
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The lighter curves are for lower

It is natural then to ask what the optimal curve is for
that length of time. The numeric answer is exemplified
in Fig.

In Fig. Bl we plot the QAOA bangs for a particular
instance of a randomized Ising model alongside the opti-
mal curve, with a bang-anneal-bang structure, that takes
the same length of time as QAOA. For ease of optimiza-
tion, the QAOA instance here uses the same time length,
(vi + Bi), for each layer (with that length also being
treated as a variational parameter), but all the qualita-
tive properties apply in the normal QAOA setting as well.
Also plotted is the QAOA curve defined by u; = ﬁfii%_
with these points plotted on the z-axis at the midpoint
of the corresponding QAOA layer.

There are two key qualitative points to be made here.
First, the optimal curve oscillates about some base curve.
The period of these oscillations matches up with the
length of the QAOA layers, with there being p = 14
QAOA layers and 14 oscillations of the optimal curve.
Second, the underlying curve that is being oscillated
about matches up with the QAOA curve. These are very
general properties and were seen in every numerical in-
stance studied.

This behavior suggests a connection between QAOA
and bang-anneal-bang form of the optimal procedures.
Furthermore, when the optimal procedure is given a long
time, it approaches an adiabatic procedure, with the ini-
tial and final bangs becoming vanishingly small and the
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FIG. 2: This plot numerically demonstrates some of the key
points of this paper, showing a p = 14 QAOA protocol and the
optimal protocol that takes the same length of time. These
numerics correspond to the same problem instance shown in
Fig. 0l and the time for the optimal protocol is fixed based
on the time taken by the QAOA protocol. Notice first that
the optimal protocol oscillates in such a way that it fits 14
oscillations into this time frame. Also, in green, we plot the
QAOA variables defined as u;, = /Bﬁr"% which track the un-
derlying annealing portion of the optimal curve (for details
see main text). These properties have been seen numerically
in every Ising model we have studied.

amplitude of the oscillations approaching zero. The rest
of the paper will be devoted to explaining this connection
by focusing on the two parts of this problem.

In Section[[V] we explain where these oscillations come
from, employing an asymptotic near-adiabatic perturba-
tive analysis. In the long-t; limit, the period of oscilla-
tions turns out to be inversely proportional to the instan-
taneous spectral gap; although, the smaller p used in cur-
rent QAOA implementations result in a ¢ such that this
limit is not reached and the periods do not correspond to
the spectral gap. It could be possible to extract spectral
gap information from a long enough QAOA procedure,
but that is likely to be outside the regime of near-term
quantum computers. Numerically, the examples we can
access also are not in this asymptotic regime, but the
same analytic mechanism can explain the origin of these
oscillations even if the timescales are not long enough for
the spectral gap to govern the oscillation period.

Then in Section [V] we explain the connection between
these oscillations and QAOA by interpreting QAOA as a
large-time-step product formula (a.k.a. Trotterization) of
the underlying optimal curve. Due to the large timescales
involved, QAOA cannot ordinarily be interpreted as a
product formula without incurring untenable errors. We
show that a product formula aligning with an underlying
oscillation incurs less error overall; though, our method
does still have scaling with p that could potentially be
mitigated by coherent cancellation of Trotter errors.



Because these properties of the optimal curve are qual-
itatively universal, we can utilize them to produce an
ansatz for the optimal protocol. We do this in Section
[VTland show that this ansatz, which includes only a small
number of variational parameters, can outperform both
naive annealing and QAOA.

IV. DERIVING THE OSCILLATIONS

First we consider how to characterize the optimal
curve, specifically the oscillatory pattern in the anneal-
ing portion of its bang-anneal-bang form. The interior
annealing region mostly has a smooth annealing form
which is quite apparent for transverse field Ising models
but appears to varying degrees in other models ﬂﬁ]

In the large-runtime limit, these optimal curves be-
come a monotonic annealing schedule, and the oscilla-
tions have vanishing amplitude. This is consistent with
the adiabatic theorem ﬂa], which guarantees that a mono-
tonically decreasing control function will transform an
initial ground state to a final ground state. Interestingly,
there are conjectures that, in the space of the Lie alge-
bra generated by B and C, the shortest path that trans-
forms between the terminal ground states is precisely the
adiabatic path which transfers all eigenstates in the ini-
tial Hamiltonian to the equivalent eigenstates in the final
Hamiltonian ﬂﬁ] Their conjecture was proven in the adi-
abatic and near-adiabatic limit, but is harder to prove far
away from this limit. Furthermore, the result considers
paths that prepare the exact final ground state, which is
a valid assumption in our setting only in the limit of long
runtimes. Therefore, we expect the optimized annealing
schedules for long times to approach an optimized adi-
abatic schedule, similar to what was derived by Roland
and Cerf [26] for the unstructured search problem or in
the quantum adiabatic brachistochrone ﬂﬁ])

It is possible to emulate an adiabatic protocol in a
shorter period of time, using shortcuts to adiabaticity
and counter-diabatic protocols m], and most notably, it
is even possible to emulate the effects of a CD addition
to the Hamiltonian using only the original Hamiltoni-
ans with a fast oscillation of the control function [28).
These fast oscillations rely on user-defined periods and
parameters and so do not describe the properties seen in
the numerics for the optimal schedule. This method also
relies on full knowledge of the counter-diabatic driving
term which we lack and which is difficult to find for large
system sizes.

Before we proceed, we comment on whether we should
expect an adiabatic evolution, or at least one that
keeps the instantaneous eigen-distribution constant, po-
tentially only at certain points (at least constant be-
tween the beginning and end of the annealing region).
Numerically, we do see this in the optimal curves. For
long times, as stated previously, the anneal is just an
optimized adiabatic schedule with very small oscillation
amplitudes. Whereas for shorter times, the oscillations

Probabilities
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FIG. 3: Here we zoom in on the optimal curve from Fig.
during the annealing region. In addition, we plot the prob-
abilities of being in the instantaneous ground state, |Co(t)|?,
and first excited state, |C1(t)|>. This plot shows that this
annealing region is transferring the states adiabatically with
the populations roughly maintained from the beginning to
end of the anneal. There is variation in these amplitudes but
they roughly return to themselves after a full oscillation of
the annealing curve.

are quite pronounced, and an examination of the eigen-
distribution, such as in Fig. [ reveals that the instan-
taneous eigen-distribution does indeed remain relatively
constant, matching up at the beginning and end of the
anneal as well as at points roughly in line with the peri-
ods of the oscillations.

Therefore, it seems natural that the annealing region of
the optimal curves is emulating a shortcut to adiabatic-
ity approach. The Magnus expansion method of Ref. m]
uses the frequency of their oscillations as a fit parameter
with their method relying on a perturbative approach
as this period becomes small. Since our goal is to de-
rive the frequency of the oscillations rather than impose
a frequency, this Magnus expansion method is not use-
ful in our circumstance. Here we consider the following
different approach to derive such an oscillatory counter-
diabatic procedure.

A. Near Adiabatic Approximation

To demonstrate this approach, we will first restrict to
the setting where only the ground state and first excited
state are relevant. This holds in the near-adiabatic limit
and is supported by our numerics, shown in Fig.

The methods we use here are similar to those used in
adiabatic boundary cancellation methods g, @] and are
generally connected to adiabatic analysis ,@] and the
analysis of shortcuts to adiabaticity ﬂﬁ] We specifically
follow results from [33].



Consider a case where we have some control function,

u(t) = uo(t) +c(t), (7)
so that the Hamiltonian is
H(t) = Ho(t) + He(t) (8)

- (uo(t)B +(1- UO(t))é) + (C(t>(3 - é)) '

Here, ug(t) is a function determined by the adiabatic na-
ture of the problem. Any sufficiently slow procedure is
adiabatic, but the annealing schedule can be optimized,
such as the analytic fine-tuning of Roland and Cerf m],
to improve performance and ensure the onset of adia-
baticity at smaller t;. The function c¢(t) represents our
control freedom, and we can choose it so that the adia-
batic passage described by ug(t) is followed as precisely
as possible.

We will furthermore label the instantaneous eigen-
states of Hy(t) by |jo(t)) with eigenvalues \;(t) so that

Ho(t) jo(t)) = X (t) [jo(t) 9)

and we ignore any degeneracies (to account for degenera-
cies, we could work in a subspace defined by the sym-
metries of our Hamiltonian and our initial ground state).
These eigenstates are defined up to a phase choice which
will be set below. Throughout this section (unless other-
wise noted), we use the ¢ subscript to indicate that these
quantities are relative to the eigenframe determined by
uo(t) rather than the full eigenframe determined by wu(t).

Now, we can express our current state in terms of these
eigenstates by

Z C; () |jo(t) (10)

We make the assumption that |Co(¢)| and |Cy(t)] are
much larger than all other probability amplitudes. This
assumption implies that g is small so that the system
is evolving approximately adiabatically. Also it implies
that ¢(t) is small so that the small deviations from the
base curve also do not break the approximation of a two-
level system.

Applying the Schrédinger equation produces

(dC;(t) . d .
—_— t Ci(t)— t 11
Z( S0 + )dt o)) @
= H(t)
J
Using the orthonormality of the eigenstates |jo(t)) we
can reduce this to a system of coupled differential equa-

tions. For instance, the coefficient of the eigenstate
lko(t)) in the left hand side of the above equation is

t) 150 (t)) -

dc’“ +ZC
J#k

|Jo( Nl (12

where we have set the phases of the -eigenstates
by requiring that (ko(t)| % [ko(t)) = O. This
choice of phase is fairly common in adiabatic anal-
ysis and shortcuts to adiabaticity where it is of-
ten referred to as part of the adiabatic frame. To
see why this phase can be chosen, consider 0 =
& (ko()[ko (1)) = (5 (ko()]) [ko(t)) + (ko(t)] 45 [ko(t)).
Therefore, Re((ko(t)| < |ko(t))) = 0 is always automati-
cally satisfied, while the phase of the state can always be
chosen such that Im((ko(t)| < |ko(t))) = 0.

If the Hamiltonian were stoquastic (Hamiltonians
where the off-diagonal elements are all real and non-
positive), this choice of phase would mean that the
instantaneous ground state maintain the same phase
throughout the evolution, which we take to be real and
positive. Similarly, the stoquastic first excited state can
be represented using only real amplitudes throughout.

The instantaneous eigenvalues of the Hamiltonian are
defined by Eq.[@ and we set Ag(t) = 0 at all times without
loss of generality. The time derivative of Eq. [0 yields

L) o) + ffo@% lo(®)) "
)

0o 0)) + A0 Lo )

The inner product of this equation with another eigen-
state |ko(t)) such that k # j:

d Ho(t)

(ho(r)] 220 |jo<t>>>+<ko<t>|ﬁo<t>i|jo<t>> (14)
d (1)

B djt (ko(t)]7o(t)) 4 A; (t) (k ()I 2 1do(®)) -

We can act on the bra states with the Hamiltonian and
eliminate one element through orthogonality to get

(ko()] L0 |5, (1))
(N (t > (1))

In Eq. (I2), this time derivative of eigenstates is multi-
plied by the amplitudes C;(t). By our assumptions, only
Co(t) and C4 (t) will be relevant, and we can discard cases
where j # 0, 1.

Now consider the right-hand side of Eq. (). If we
were in the true adiabatic reference frame of the full H ()
instead of just ﬁo(t), the Hamiltonian would just scale
each eigenstate by its eigenvalue, but instead we get

(ko(t)] H(t Zc ) ljo(t) (16)

t) +ch<t> (ko(t)| He(t

= (o] S lio(ey. (15)

We define



where A\o(t) = 0. Thus, A(¢) has a meaning of the in-
stantaneous spectral gap for the Hamiltonian Hy(¢). In
the stoquastic setting, all of these quantities are real, and
we will treat them as such going forward.

Putting everything together, the Schrodinger equation
for the ground state and first excited state amplitudes
give

[ dCo(t) y(t)uo(t)
< i cu(t)Tf)) a7)

= c(t) (Co(t)ko(t) + Ci(t)y(t)),

(dCi(t) V()to(t)
Z( 71 —Co(t)w) (18)

= A()C1(t) + ct) (Co(t)y(t) + Cr(t)ra(t)) .

With these equations, we can separate out the ampli-
tudes and phases so that

Ci(t) = Ay(t)e'» D, (19)

Separating the real and imaginary parts of the differ-
ential equations, the resulting differential equations are
(suppressing all functional dependencies for brevity)

©=¢o— o1 = A+ c(ko — K1) (20)
A — A7 Yo .

o= = (ersini) + o oosto)) a1, (21)

A = (c'y sin(p) + % COS(<P)> Ag. (22)

As we already mentioned, the assumption that the
Hamiltonian is stoquastic ensures that the v and x; func-
tions are real. In the absence of stoquasticity, these
functions could be complex-valued which would have just
made the algebra above to separate our amplitudes and
phases slightly more complicated without fundamentally
changing the results.

The equations (21} 22) for the amplitudes Ao 1 can be
integrated to give

Ap(t) = acos </Ot dt’ (c*y sin(yp) + %O Cos(cp)) + 19) ,
(23)

Aq(t) = asin (/Ot ar’ <C'y sin(yp) + %O cos(ga)) + 19> ,
(24)

where a and ¢ are constants that can be set such that
acos? is the initial population of the ground state and
asind is the initial population of the first excited state.
The signs here do not matter because any sign can be
absorbed into the ¢ phase.

Maintaining the same populations of |Ag(t)| and
|A1(t)| throughout the evolution translates to the trig
argument in Eqs. (23) & 24)) at time ¢,

eufu(t)] = | " <cvsin<so>+”f"‘0cos<w>), (25)

being close to a multiple of 7. However in practice, a
non-zero multiple of m would correspond to swapping the
populations back and forth during the anneal which is
inconsistent with the assumptions we made about being
near-adiabatic with low leakage. Therefore, we want ©g
to be as close to zero as possible, meaning that the prob-
lem has simplified to finding the ¢(¢) that ensures O ~ 0.

In the numerical examples shown, the oscillations fit
neatly into the time allowed, giving an integer number
of oscillations. This is largely because we look at cases
where the time for the optimal procedure is the same as
the time that QAOA takes. In other cases when the time
does not match the time from a QAOA protocol, the os-
cillations are not regular. The point here is that we only
expect ¢(t) to have a nice, simple oscillatory structure
when 7 neatly divides into periods of the oscillations.

In Appendix [A1] we work in the perturbative limit of
lig < 1 to derive ¢(t) which ensures that © is zero:

ooz dIn (Alelt)
(t) = (252))2 C(hj; (t)( ) cos(A(uo (1))1) + O(iid).
(26)

The cosine here follows the oscillations of the phase, ¢(t),
and mean that we go faster when the phase difference is
large and slower when the phase difference is small. Es-
sentially, these oscillations are designed to take advan-
tage of the natural phase oscillations to speed up the
procedure. The dependence of the amplitude on the gap
reflects the fact that adiabaticity is easier (and there-
fore these oscillations are not necessary) when the gap is
large. So long as t; is a multiple of the period of oscilla-
tions 7 = #:(t)) + O(1up(t)), then these oscillations will
ensure that the amplitudes follow the eigenbasis associ-
ated with ug(t) up to corrections of O(13).

As a note here, it is well known that oscillations, such
as these, can eliminate the asymptotic nature of adiabatic
theorem @, @] If oscillations are present, then in the
infinite-time limit, the system will no longer be in the
ground state, no matter how slowly it evolved. However,
this is not a problem for us because the amplitude of the
oscillations is decreasing with 4§ (and hence with 1/t7)
which is small enough for the deleterious effects to not
manifest [32].

As shown in the Appendix, this perturbative expres-
sion relies on the cancellation that occurs when ¢(¢) is out
of phase with the oscillations of the phase difference ¢(¢).
Specifically, ¢(t) and cos(¢(t)) need to be in phase (up to
integer multiples of 7) to ensure cancellation. This can be
seen by looking at Eq. (28] where having c(t) o cos(p(t))
maximizes the effect of the ¢(t) term, in the perturbative
limit, allowing us to cancel out more of the contributions




from the 4o term. Later in Eq. ([27]), we can see that
having oscillations in the control field that change like
cos(p(t)) (differentiating to a sin(p(t))) will counteract
the cos(p(t)) in that integrand leading to a smaller con-
tribution to the total integral. Up to first order in g, the
phase difference scales like ¢(t) = A(uo(t))t, so we wind
up with oscillations with period inversely proportional to
the spectral gap.

Unfortunately, the numerics shown in Figs. ()-(3)
for the optimal curves do not fall into the perturbative
regime described above. In these numerics, g is large
enough (¢; is small enough) that ¢ is no longer dom-
inated by the spectral gap and begins oscillating at a
higher frequency. As stated in the numerics section, de-
termining the exact optimal curves for larger ¢y becomes
unfeasible due to the difficulty of determining the gra-
dient when so many solutions are good up to numerical
precision.

While it is not possible to solve for this frequency per-
turbatively any more, based on the analysis in Appendix
[AT] as well as numerical simulations of Eqgs. (20H22]) out-
side of the perturbative regime of g, the best way to
follow adiabaticity along wug(t) still relies on the phase
©(t). In this nonperturbative regime, it becomes easier
to deal with the full adiabatic reference frame that fol-
lows the eigenstates of the full u(t).

In Appendix [A2] we derive the near-adiabatic differ-
ential equations again, this time following the full control
function w(t) instead of wp(t). In this setting, we need
to impose boundary conditions that u(0) = u, at the
start of the relevant region and that u(t;) = u, at the
end of the region. The resulting equations are similar,
and the key quantity is still given by an argument that
is functionally similar to ©g:

Olu(t)] = /0 ' dt% cos(p(t)). (27)

Unfortunately, this form does not lend itself to a per-
turbative approach anymore because the small quantity
% now contains information about both the base curve
and the oscillations. Fortunately, this form makes it
even more clear how to ensure that this quantity should

be close to zero. Namely, by roughly having 'YA(Z%;? x

sin(¢(t)) we ensure that the integrand in Eq. ([27]) changes
sign with a frequency twice that of ¢(t). This allows the
integral to cancel itself out over the oscillations, result-
ing in a O[u(t)] which is small. This intuition coincides
perfectly with the numerics in the problem.

To see this in practice, in Fig.[d] we plot u(t), cos(o(t)),

and VA(?L%;;‘ as determined numerically for an optimal

curve resulting from a model using a randomized Ising
model. This plot was constructed so that the time allot-
ted for the annealing curve corresponds to the amount of
time that p = 10 QAOA needed.

In Fig. @ the frequency of the phase oscillations
matches the frequency of the optimal curve. Note that
this is still for relatively low ¢y where the annealing curve

Controls

cos(p(t))
A(u(t))it)
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Tt e cos(p(£)) 00 f
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FIG. 4: This plot shows the optimal curve, u(t), as well as
two of the quantities that go into Eq. (27). This plot uses the
same problem instance from Fig. [I] and the initial and final
bits of time have been cut off to focus on just the annealing
region of interest. Notably, from this curve, we can see that
the phase difference between the ground and first excited state
matches up exactly with the oscillatory pattern of w(t) (with
a m phase shift) and is out of phase (w/2 phase shift) with
u(t) as we expect from the analytic arguments surrounding

Eq. ([Z10).

has relatively large amplitude oscillations, meaning the
resulting oscillations are not exactly sinusoidal in shape
and the period does not exactly mesh up with the asymp-
totic expectation of the spectral gap.

V. PRODUCT FORMULA ERROR

Based on the numerics presented in Section [l we
see that QAOA is emulating the behavior of the optimal
curve that takes the same amount of time. This section
will seek to elucidate how QAOA can emulate the opti-
mal curve, discussed in the previous section, despite the
step sizes being large enough to throw off the usual error
analysis of product formulas, also known as Trotteriza-
tion.

To further see how QAOA is emulating the optimal
curve, compare Figs. Bl & Bl These show the probabili-
ties of being in the ground state and first excited state
of the instantaneous evolutions for the optimal curve
and QAOA, respectively. For QAOA, the “instantaneous

eigenbasis” is determined by w; = ﬂ-,ifv-’ the proportion

of the QAOA layer dedicated to B. This eigenbasis is not
physically related to QAOA, which still consists of large
bangs, but it catches the effective Hamiltonian being em-
ulated by the pairs of bangs. Both procedures roughly
track the ground state with some leakage, mostly into the
first excited state. QAOA is a rougher procedure with
more leakage, compared to the optimal protocol. Fig-
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FIG. 5: The instantaneous ground state and first excited state
probabilities are plotted versus the QAOA layer. The instan-
taneous eigenbasis is defined based off u; = Bi’i% at the end
of the ith layer. The probabilities are measured after the full
QAOA layer (both the C' and the B bangs). QAOA roughly
follows an adiabatic-like procedure with the ground state pop-
ulation mostly being preserved. The problem instance dis-
played here is the same as in Fig. [Il

ure B shows QAOA probabilities only after a full layer of
bangs; the intermediate probabilities deviate even more
from an adiabatic transfer.

Let’s suppose that there is some optimal curve, u(t),
defined such that the evolution governed by Eq. (I
brings the state as close to the target state as possible in
time ty. Based off the previous section, we will here as-
sume that this optimal control function can be described
approximately by

u(t) = wo(t/ty) + c(t, ty), (28)

where ¢(t) is some oscillatory function. For concreteness,
we take

c(t,ty) = —co(ty)sin <277Tt + (b) , (29)

where ¢q is some amplitude, 7 some period, and ¢ some
phase. We have included the negative sign and specified
down to sine since this will correspond to ¢ = 0 later on.
In essence, we have oscillations whose pattern matches
our preexisting pattern of switchings in QAOA protocols
and also the pattern of oscillations in the optimal proto-
cols.

For the purposes of this section, we focus on a small re-
gion of the annealing curve where 1 is small and approx-
imately constant. Then we ask how accurate a product
series approximation is to the true evolution.

The actual evolution will be governed by the unitary
time evolution operator,

Ulty,0) = expr <z /0 . dtH(t)) , (30)
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where exps denotes the time ordered exponential. We
approximate this unitary by breaking it up into a product
formula that has a QAOA-like format,

p—1
Upp(ty,0) = H Uy (kAt + At kA, (31)
k=0

where At is the length of the QAOA layer. The Ul here
are operators corresponding to a single Trotter slice of the
evolution. In this section, we assume that every QAOA
layer uses the same At, and as we will see, this corre-
sponds to the frequency of oscillations in the optimal
curve being constant with time (again assuming that g
is small enough). Therefore, we simply set At = %f. It
is appropriate to interpret this section as looking at a
small region of the optimal curve in the adiabatic limit
where the oscillations occur on much shorter timescales
than the gross changes in the curve. When we specify
down to our specific control problem, we get

to+At
Uy (to + At,to) =exp (zB/ dtu(t)) (32)

to

X exp (ié’ /tow dt (1 — u(t))) :

Our core result is that taking At = 7, the size of the
Trotter slice equal to the period of the annealing oscil-
lation, while keeping the ratio of the bang lengths pro-
portional to ug(t), leads to a smaller upper bound on the
Trotterization error than if we picked a different At. In
this way it becomes advantageous for QAOA to match
its layer length to the period of the optimal curve oscilla-
tions and its ratio of B bang lengths and C' bang lengths
to the value of the base annealing function wug(t).

We examine this enhancement in two different settings
described in the appendices. First, in Appendix [B1l we
show this enhancement in the context of the standard op-
erator error for product formulas. The main arguments
in the appendix center around the standard error formula
for the Trotter approximation known as the product for-
mula. We zoom in on a small region of the annealing
curve and consider the control function given in Eq. (28)
vs. the case without the added oscillations. We find that
these added oscillations can be accounted for in the prod-
uct formula, and if the oscillation period and phase match
up, it can lead to a lower error bound. If the oscilla-
tion period does not match, the error bound numerically
matches up with the error from the case without oscilla-
tions at all.

We find (see the Appendix [B1] for details) that

10t7,0) ~ Upr (i, 0) (33)
<[l 552 (- 2).

where we assumed At = 7 and ¢ = 0. In the case of ¢y =
0, this is equal to the standard error bound for product



formulas. This improvement decreases when At # 7, so
the enhancement is specifically dependent on matching
the size of the Trotter steps to the period of the annealing
oscillations. This washing out can be seen in Fig. [6 but
notice that there is also a small enhancement if At = mr
or mAt =7 for any m € Z*, m > 1.

Unfortunately, this bound on the error from unitaries
scales linearly with p, the number of QAOA layers.
Therefore, rather than getting tighter with more QAOA
layers, as we expect, the bound gets looser. This scaling
is because this worst-case bound assumes that adjacent
layers of the product formula have errors that accumulate
coherently.

Our second approach is restricted to an adiabatic an-
neal where the goal is to maintain the populations of
eigenstates, specifically the ground state in our setting.
The overall Trotter error bound in this setting was re-
cently tightened by Yi and Crosson @] The same os-
cillatory enhancement found in the case of operator er-
rors can be shown to occur in this setting as well, but
the method requires a perturbative limit which does not
hold for the QAOA angles. Specifically, the method re-
quires At € O(n~!) which is not consistent with what
we see numerically from QAOA with step sizes remaining
roughly constant and large as the system size n increases,
Bi,vi € O(1). We rederive and extend the previous re-
sults and modify them for our setting in Appendix
This extension consists of considering the setup where
the underlying annealing schedule takes on the form of
Eq. (28). This oscillatory annealing schedule is accounted
for in the context of the adiabatic product formula anal-
ysis. The key result of the method of Ref. [40] is a re-
duction in the scaling of the Trotter error from O(At?p)
down to (9(1—1)) + (9(%) when trying to simulate an adi-
abatic evolution. We show that this error scaling does
not vanish when an oscillating schedule is considered (for
small enough oscillations that the adiabatic theorem still
holds) and show that there is an enhancement to the er-
ror scaling when the product formula step size matches
the oscillation period.

It is not possible to fully apply this second approach
to our setting because of the perturbative At issues. Our
product formula enhancement works partially in this set-
ting and inherits the improved p scaling that the adia-
batic Trotter method HE] naturally has over the operator
error scaling, Eq. (B3).

These two approaches are limited to unoptimized prod-
uct formula approximation of the underlying optimal
curve. Of course, QAOA has more freedom than this and
can modify the parameters to do a smarter approxima-
tion than just a product formula. It is allowed to modify
the angles away from what a product formula would do in
order to achieve more enhancement. Specifically, it could
be possible to coherently match up the leakage between
multiple QAOA layers. All the upper bounds described
above assume a worst case scenario that assumes the er-
rors from adjacent QAOA layers add coherently via the
triangle inequality, but it may be possible to design the
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FIG. 6: This plot shows the upper bound on the Trotter
error in the unitaries from Eq. [B3)) for a fixed ¢y, changing
p (and hence At = ). The oscillation period in this case
was taken to be 7 = 0.2, and the annealing function was
taken to be a simple linear ramp with superposed oscillatory
function. The blue dots with lines represent the case with
oscillations, and the red squares represent the error bound
when no oscillations are present. Eq. ([B3)) is specifically for
the case when At = 7 with this plot being more general.
As can be seen, the proportional amount of enhancement is
greatest when At = 7, but there is a weaker enhancement
when there is an integer multiple difference between these
two quantities.

protocol so that the errors subtract coherently to some
degree. Such an approach has been proposed recently @]
where the Trotterization error itself is used to engineer
counter-diabatic driving terms.

We note that the results in this section should all be
taken as analytic evidence supporting the numeric evi-
dence from Sec. [Tl These bounds do exhibit an enhance-
ment when we match up the Trotter step size and the
oscillation period, but the bounds are not tight enough
to describe the exact setting we see in the numerics. We
leave it up to future work to tighten these bounds further
to the setting of QAOA.

VI. BANG-ANNEAL-BANG ANSATZ
ALGORITHM

One of the leading problems with the optimal curves is
how to construct them efficiently. These optimal curves
always seem to have the same qualitative structure, but
working out the exact shape and length of various fea-
tures is key to implementing these schedules effectively.
Formally, these schedules can be found via a gradient de-
scent procedure, using the analytically constructed gra-
dient ®(t) = %. This requires information from
experimentally inaccessible intermediate times, and nu-



merically estimating this gradient can prove cumbersome
for an entire continuous function.

To address these issues, we here present a variational
algorithm that produces a good approximation of the
bang-anneal-bang optimal path. This algorithm will not
produce the exact optimal procedure but will approxi-
mate it, and in our numerical trials it produces better
results, given fixed time, than either QAOA or a sim-
ple, linear annealing schedule. The number of variational
parameters can be adjusted depending on the available
resources.

This algorithm is based off the insight that the asymp-
totic curve derived from QAOA angles coincides with the
base curve in the annealing region of the optimal curves.
Specifically, if QAOA is parameterized in terms of p lay-
ers with f3;, the angles for mixer B bangs, and ~;, the
angles for problem C' bangs, then the asymptotic QAOA
curve can be found in the large p limit by

i—1\ B
U(pl)_ﬂﬂr%’ (34)

where v(s) has the meaning of the control function. This
behavior was noted numerically in Refs. B, @] The cur-
rent work provides justification for the existence of these
asymptotic curves and links them to the optimal proto-
cols. Specifically, [§] interpreted this v(s) as an annealing
curve which resulted in a good annealing procedure that
actually captured well-known effects from diabatic quan-
tum annealing. Our current algorithm is an improve-
ment on this that captures even more of the structure
and power of the optimal procedure.

In optimal protocols, this v(s) has roughly the same
functional form as the base curve ug(s) that determines
the shape of the annealing region, up to a superposed os-
cillatory pattern. Furthermore, the period of that oscil-
latory pattern coincides with the duration of the QAOA
layers.

Therefore, it should be possible to use an existing
QAOA procedure to get a good guess as to what the
optimal procedure should look like. The initial and final
bangs are vanishingly small for longer procedures and so
are not well captured by QAOA. These bangs can be in-
serted in later as variational parameters. Therefore, we
propose the following hybrid variational algorithm for ap-
proximating the optimal curves.

1. Find QAOA angles for large enough p to be able to
i—1
1)
found that at p ~ 5 it is already possible to start
identifying the pattern, with p ~ 10 — 20 clearly
identifying the pattern.

identify the shape of v In practice, we have

2. Interpret the QAOA curve v (1111) as a smooth
P

annealing region.

3. Create an ansatz for the bang-anneal-bang curve
that has a u = 0 bang at the beginning, the anneal-

i—1
p—1

ing curve defined by v ( in the middle, and a
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u = 1 bang at the end. Furthermore, superpose an
oscillatory curve c(t) = A(t) sin(w(t)t + ¢) in the
annealing region so that this region is described by
o(t) + c(t).

e The lengths of the initial, 5, and final, S,
bangs are variational parameters.

e There are multiple ways to parameterize the
interior anneal:

— The length of the anneal can be fixed
to be the same as the time the QAOA
procedure took minus the bang lengths,
Toaoa — 7 — B; the frequency of os-
cillations can be chosen to be w(t) =
2mp/Toaoa; and the amplitude of the os-
cillations A(t) = A is taken to be a varia-
tional parameter.

— The length of the anneal can be fixed to
be Toaoa — 7 — B; the frequency of os-
cillations w(t) = w and amplitude of os-
cillations A(t) = A are taken to be static
variational parameters.

— The length of the anneal can be fixed to
be Toaoa — 7 — B; the frequency of os-
cillations w(t) is chosen to be a variable
function so that the period of a given os-
cillation matches the length of the corre-
sponding QAOA layer. The amplitudes
of oscillation can either be fixed to be the
same or treated as seperate variational pa-
rameters in each oscillation.

— The length of the anneal, T4, can be
treated as a variational parameter ﬂﬁ]
The frequency can be taken as fixed
w(t) = 2mp/Tgaoa or allowed to vary
as a free fitted parameter as in previous
versions. The amplitude of oscillation is
a single variational parameter or can be
binned into different regions with the am-
plitude in each region being treated as a
variational parameter.

— Adjust this ansatz as suits the system at
hand and how many variational parame-
ters the specific setting is capable of han-
dling.

e Based on analytics, the optimal phase ¢
should be 0, but for optimization purposes it
might be beneficial to treat this phase as a
variational parameter as well.

e In the end, this procedure will result in an
ansatz with at least three (53, 4, and A), but
possibly more, variational parameters.

4. Using the constructed anstaz, run a variational al-

gorithm to determine the optimal values of the se-
lected variational parameters, attempting to opti-
mize with respect to the final energy of the state
with respect to C.



This procedure will always produce a better protocol
than just interpreting u(s) = v(s), and the number of
variational parameters can be small. The most intensive
part of this from a variational standpoint is the initial
QAOA procedure to discover the shape of v(s). Given
the asymptotic nature of this curve, it is possible to find
v(s) for a given p (corresponding to a QAOA procedure
that takes time ¢;) and then scale it up into a bang-
anneal-bang ansatz for a larger ty.

Since the base annealing curve is related asymptoti-
cally to an optimized adiabatic schedule, it could be pos-
sible to use insight from the adiabatic limit to bypass the
QAOA step entirely and create an ansatz for v(s) a pri-
ori. For instance, in the unstructured search problem, it
could be possible to use Roland & Cerf’s [26] optimized
adiabatic annealing schedule as a guess for the ug(t) base
curve. If knowledge of the spectral gap is available, sim-
ilar curves could be constructed for other problem in-
stances.

Algorithm 1 Bang-Anneal-Bang Ansatz Optimization

1: procedure BAB ANSATZ ALGORIHM(D)
2: Bi, vi < OptimizeQAOA(p) > Find QAOA angles
vo (=) — L > Approximate annealing curve

p—1 Bit+i
T« P20 1Bl + il > Total QAOA time
5’, ¥, w, ¢ < Initial Guess
while Optimizing do ~
Vbt (t) <= CONSTRUCTANSATZ(vo(s), 8,7, T, w, &)
Epap < Evolution under vpq, > Energy of Protocol
B, 4, w, ¢ + Update Based on Optimization
Vbap(t) < CONSTRUCTANSATZ(vo(s), 3,7, T, w, ¢) b
Final Protocol
11: return veas(t)

12: function CONSTRUCTANSATZ(vo(s), B, ¥, T, w, d)
13: for t € [0, 3] do > Initial Bang

© P NPT W

=
=

14: ’Ubab(t) «~—0

15: for t;, € [B, T —4] do > Interior Anneal
16: vbab(t)evo(ﬁ_—B)JrAcos(thrqS)

17: for t, € [T —#4,T] do > Final Bang
18: ’Ubab(tk) ~—1

19: return veas(t)

Below we present some of the results for this algorithm,
simulated on a classical computer, solving directly the
Schrodinger equation. Our algorithm could be imple-
mented on a quantum computer, replacing this simula-
tion of the Schrédinger equation with actual quantum
evolution. Three different levels of the above algorithm
are used. The first listed as “Basic Interpolation” is the
form used by [§] where the QAOA derived asymptotic
curve v(s) is just interpreted as an annealing curve. The
second, “Sine Interpolation,” superposes on top of this
a sine curve whose period is equal to the average dura-
tion of a QAOA layer. Finally, “BAB Ansatz” is our full
Bang-Anneal-Bang Ansatz, here treating 4 (the initial
bang), 3 (the final bang), w (the frequency of the oscilla-
tions), A (the amplitude of the oscillations), and ¢ (the
phase of the oscillations) to all be variational parameters.
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FIG. 7: Various versions of our algorithm, with “BAB
Ansatz” being the most advanced in terms of number of pa-
rameters. The BAB Ansatz approximately follows the opti-
mal procedure found using gradient descent, “GD.” The en-
ergies resulting from each procedure can be found in Tab. [l
The problem instance in this case is the same as in Fig. [l but
is run for a time corresponding to p = 6 QAOA.

Model |Energy
Linear | -5.987
Basic | -6.257
Sine | -6.522
QAOA | -6.578
BAB | -6.636
GD | -6.705
Ground| -7.214

TABLE I: Energies related to the procedures shown in Fig. [7
The more information is used in constructing the ansatz, the
closer we get to the optimal energy possible for this time.
Notably, our full BAB Ansatz is required to perform better
than the underlying QAOA protocols used to kickstart this
procedure. Based on our numerics, this ordering is represen-
tative of the relative qualities of the algorithms with BAB
outperforming QAOA but not quite reaching the quality of
the Optimal procedure.

This version of the algorithm is outlined in pseudocode
in Alg.[[l For all procedures, the time allotted is t¢, the
same as the time that the QAOA procedure took.

Fig.[Mshows an example. The kickstarting QAOA pro-
cedure used p = 6, and also shown are a basic linear
ramp, and the exact optimal procedure found via a gra-
dient descent (“GD”) procedure. The resulting energies
of all the relevant procedures are summarized in the ac-
companying Table. [l While this represents results for a
single problem instance, these results are typical of what
we see in other instances. Notably, the relative ordering
of the energies achieved by each procedure in Table [ is
typical of all instances we examined.

Note that we have attempted to run this algorithm



without the initial QAOA procedure to find an estimate
for v(s) and instead using just a linear ramp for v(s). The
resulting procedure performs poorly compared to any of
our procedures employing the QAOA derived asymptotic
curve but is still favorable when compared to a simple
linear ramp. As stated before, if anything is known a
priori about the shape of this base annealing curve, that
information can be used instead of the QAOA procedure.

VII. CONCLUSION

The optimal protocol is by construction the most effi-
cient way to operate a quantum annealer or analog quan-
tum computer. This protocol demonstrates structure in-
cluding the initial and final bangs explored in Ref. ﬂﬁ]
that vanish in the long-t; limit.

This work explored the structure of the annealing re-
gion in more detail. Due to previous results regarding
the optimality of the adiabatic path Hﬁ], we expect and
indeed see that in the long-t; limit, the annealing re-
gion approaches an optimized adiabatic schedule, simi-
lar to what was derived by Roland and Cerf [26]. Fur-
thermore, that optimal curve’s annealing section has an
oscillatory pattern superposed on top of it. In the adi-
abatic limit, the amplitude of these oscillations should
vanish to recover a monotonic annealing ramp. However,
in the near-adiabatic limit, these oscillations are helpful
in managing the leakage between the ground state and
first excited state. We derive the near-adiabatic form of
these oscillations and describe their dependence on the
phase difference between the ground state and first ex-
cited state amplitudes outside of this perturbative limit.

This analysis of the near-adiabatic limit of the anneal-
ing curve should be of interest in itself since it can be
used to potentially enhance adiabatic protocols with lit-
tle additional a priori information. This enhancement
can be implemented by our algorithm in Sec. V1] using
the original annealing curve instead of a QAOA-derived
curve.

Furthermore, we explore the connections between
QAOA and this oscillatory structure of the optimal
curves. Numerically, we see that optimal QAOA sched-
ule incorporates the structure of the underlying optimal
curve. The length of the QAOA layers matches up with
the oscillation period of the annealing curve, and the ra-
tio of the bang lengths within the QAOA layer matches
up with the average value of the annealing curve within
that period.

This behavior provides an explanation for the QAOA
asymptotic curve behavior at large p seen in Refs. B, @]
The behavior of the optimal curve can be understood
asymptotically where it approaches an optimized adia-
batic procedure with a fixed curve form. If QAOA is
emulating this optimal curve, then QAOA should also be
approaching a fixed asymptotic form.

We sought to provide analytic evidence for this match-
ing up between the QAOA curve and the optimal proce-
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dure. Our results do show that there is an decrease in
the error of a product formula if the product formula step
size matches the oscillations in an annealing curve be-
ing Trotterized. Furthermore, this enhancement requires
that the ratio of the bangs follows the annealing curve,
just as we see in the numerics. Unfortunately, this error
bound scales unfavorably with p, the number of QAOA
layers, failing to match up with the scaling in practice.
Based on other methods, we provide further arguments
for how this additional scaling behavior could occur, but
it remains an open question how to tighten this analysis
to match the exact scaling seen in QAOA in practice.

As a result of this analytic and numeric work, we not
only achieve an explanation for the asymptotic large-p
behavior of QAOA, but we also better understand the
optimal procedure. One of the main difficulties with the
optimal curve is that it is not feasible to construct this
protocol on real hardware. The protocol requires too
much information about the intermediate quantum state
and requires treating an entire smooth curve as a varia-
tional parameter. To address these issues, in Section [VI]
we constructed a new algorithm that uses the results of
this paper to create an ansatz with very few variational
parameters that outperforms naive quantum annealing
and QAOA.

This algorithm uses a QAOA procedure to find the
form of the annealing region of the optimal procedure
and then uses this to create an ansatz. This ansatz then
treats the lengths of the initial bang, final bang, and some
basic properties of the oscillatory pattern as variational
parameters in an ansatz. In practice, this algorithm out-
performs QAOA and quantum annealing but falls slightly
short of the full optimal protocol.
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Appendix A: Near-Adiabatic

In this section of the appendix, we explore additional
features of the near-adiabatic limit. In section [AT] we
carry out a perturbative analysis of the near-adiabatic
equations to find the form of the oscillations, ¢(t), in the
limit where the base ramp is changing slowly ug < 1.
The end result of this section is the derivation of Eq. (26
from the main text.

The derivation of the near-adiabtic limit in the main
paper relies on following the base annealing curve with-
out the oscillations. It is possible to derive the near-
adiabatic frame following the exact adiabatic frame, fol-
lowing the control function, oscillations and all. We do
this derivation in Section This formulation is more
useful outside the perturbative limit. This connects to
Eq. 1) from the main text.

Section derives the optimal control equations in
the near-adiabatic limit. These differential equations, if
solvable, would give not only the oscillatory portion c¢(t)
but the entire function u(t) = ug(t) + ¢(t), enforcing u(0)
and u(ts). These equations might be of interest to ex-
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perts or numericists but no longer lend themselves to a
perturbative analysis, making them less useful within the
current context.

1. Perturbative Limit

Recall the Schrodinger equation, Eq. (I7) and (I8, for
the ground state and first excited state amplitudes,

i (4900 4 ¢,y 100 (A1)
= c(t) (Co(t)ro(t) + C1(t)v(t)),
(19 -y 1) (A2)

= A)CL(E) + () (Co(H)y(t) + Cr(t)ra (1)) -

Next, we will Taylor expand A(ug(t)) and ~y(ug(t))
around ug(0) = uéo) so that

a0y, dA(ug(t)) i

A(UO (t)) ~ A(UO ) + d’ll,o(t) uU(t)‘)u(UU) Ota (A3)
oy, d7(uo(t)) -

’Y(Uo(t)) ~ ,Y(UO ) + dUO(t) uO(t)_>u(()0) ’U,()t. (A4)

For convenience, we shorten the notation here so that

A(ug(t)) = Ao + Artiot,
y(uo(t)) = Yo + Y10t

Officially, we would need to do the same expansion
with the x variables, but it turns out that the x; are not
relevant to lowest non-zero order in perturbation theory.

The strategy here will be to do time dependent pertur-
bation theory, specifically keeping track of orders of .
Furthermore, we will assume that we are zoomed in on
one section of the ug(t) curve where 4 can be treated as
approximately constant.

We will furthermore make an ansatz that our addi-
tional control function

c(t) = co sin(wt + 0). (AT)

In the new notation, we have two-level Hamiltonian

that we will analyse within time-dependent perturbation

theory with
0 0
Hy = , A8
0 (o A0> (A8)

and perturbation
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v c(t)ko

If we assumed that ¢ € O(4p) and did a perturbative
expansion to first order in g, we would find that ¢g = 0
leads to no leakage between the ground state and first
excited state. Therefore, in order to get a nontrivial so-
lution, we assume that cg € O(u3). Furthermore, looking
at V, we can see that it is V € O(tug). Therefore, if we
look at time dependent perturbation theory to second or-
der in V', we will extract all the second order dependence
on ug. Up to the second order in the perturbation V,

atey = [1= [ anvte)~ [ arv) [ arvzw] o

with V(t) = W)V (£)W (t) where

w1}, ).

In order to transform the wave-function from the inter-
action picture ¥y — ¢ back to original representation,
we use relation [1)(t)) = W (¢t) |11 (t)).

We can perform these integrals keeping terms up to
second order in uy. We specifically want there to be no
leakage between the ground state and first excited state
after one oscillation period. The natural frequency in
this system is Ag, so we expect

(A10)

w= Ay + 6w (A1)

and ty = — 0ty where dty,0w € O(1). Because w
only appears { inside the trig function in Eq. (A7) which is
multiplied by ¢y € O(4d), dw € O(1ip) does not matter to
the level of perturbation theory considered in this section.
To zeroth order in g, ty = Z—’;. It is possible that w
could be farther away from Ay, but numerical analysis of
these equations as well as other evidence presented in the
main body suggests that w ~ Ay leads to the smallest
correction that still works. Given the assumptions of the
near-adiabatic approximations, a smaller correction term
is preferable.

Let’s define a unitary operator U(t) via [¢r(t)) =
U(t) [$(0)), so that [i(t;)) = W(tp)U(ty) [0(0)). We
want no leakage between the ground state and the first
excited state by the end of this evolution which means
that we want Uy2(t¢) = 0 up to the relevant order.

After a lengthy calculation, one can show that

. 21yl .,  Tmyocosl
U12(tf)21—005tf%— XZ L2 — %Ao co (A12)
ATy0AT L, 27771 5 .myosing "
ZiA% Ug — A3 g T0c0+(9(u0

(70 + 71t0t) ( (t) + ZA0+A1uot)

> 3

).
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(y0 + M1tot) (C(t) ’A0+qulu0t)

(A9)
C(t)lil + Al’U,()t

Due to our assumptions about stoquasticity, all the quan-
tities represented here are real which means that we can
separate Eq. (A12) out into real and imaginary compo-
nents and require those two sets to sum to zero indepen-
dently. So we need the terms on the first line of Eq. (A12)
to sum to zero independently and the terms on the second
line to sum to zero independently.

Looking at the imaginary parts of Eq. (AI2]), we can
see that the leakage is zero if

~ ﬂ)
Y/

.ocscl ( 2/,
The smallest amplitude of oscillations corresponds to 6 =

5, that results in

Co =

co = (A14)

_n )3
A2 AO ) + O(UO)

Yo

By substituting § — 7/2 in Eq. (AI2) and requiring the
real part of the resulting expression to vanish we arrive
at

2
5ty = 21?1 o + O(a). (A15)

So with this oscillation in the control function, we have
proven that after a time ¢ty = A— — O0ty, the amplitudes
will return to themselves, resultmg in perfect adiabatic
transfer up to second order in 43 in this near-adiabatic
limit.

We can now plug into our ansatz, Eq. (A7), all the
results of this section to get

ooz dIn (Alelt)
() = g R sty o

duo (t)

(A16)
which uses the results of Eq. (AT4) as well as the defini-
tions of Aj and v, from Eqs. (A3HAG). The log derivative
is used to compress notation. This form of oscillations
will cancel out the deleterious effects of iy # 0 up to
second order.

The ansatz for w in Eq.[AT1lis ultimately based off the
zeroth order approximation of ¢(t) which determines the
natural frequency in this problem. The correction to the
total evolution time 4ty could, therefore, be derived by
considering the phase difference between the first excited
state and ground state. We start with the ¢ equation,
Eq. 20), and look for the solution to this equation to
first order in 4o (which means that ¢(¢) will be negligi-
bly small). Firstly, since the A; terms only appear at-
tached to small parameters, we can approximate them




by their zeroth order constants, and the same goes for
A and . The siny and cosp terms are troublesome,
but they are already multiplied by small parameters, so
we can approximate them by the zeroth order solution
to this equation o(t) ~ At (using as a boundary con-
dition that ©(0) = 0). With these approximations and
iterations, the first order solution to the equation is

(p(t) ~ Aot

1
+ <§A1t2 +

We expect the populations to return after one full cycle
of the system, both in terms of the phases of the eigen-
state populations and the frequency of the ansatz w. We
can then ask what value of ¢ corresponds to a full period
of oscillation such that p(ty) = 2m + O(43). To zeroth
order in g it is obvious that t; = 27/A(. Using this, it
is easy to show that

(A17)

Yo(cos(Agt) — 1)> i
A2 tan(20) 0

2r  2m2A, .
tf = AO AB —=—Up =+ O(Uo) (A18)
corresponds to one period of oscillation for the phase.
Note that this time does indeed correspond to Eq. (AT3)
derived through by requiring no leakage from the unitary
matrix.

2. Adiabatic Frame

In the main text, we derived the near-adiabatic limit
for the case of the instantaneous eigenframe evolving
alongside the base curve ug(t) so that the full control
function was given by w(t) = ug(t) + ¢(t). In this set-
ting ¢(t) was our actual free function with ug(t) fixed
and ¢(0) = ¢(ty) = 0. It is possible to treat this entire
problem a control problem and seek out the u(t) that
maintains populations the best between ¢ = 0 and ¢ = ¢y
subject to the constraint that w(0) = u, and u(ty) = uy.

The full version of this problem would just result in
optimal curves in general, but here we are interested in
just the smooth annealing region. One feature of this
smooth annealing region is that the bangs have already
excited up some of the state into the first excited state,
making the near-adiabatic approximation even more rel-
evant. For the purposes of this section, we will zoom
in on one small region of the annealing curve and still
implicitly assume that u, and u; are not that far apart.

We consider the probability amplitudes, C;(t) of being
in the instantaneous eigenstates of a system, |j(u(t))),
with instantaneous eigenenergies, A;(u(t)). So our state
can be written as

(A19)

)= > C0)liuv).

Applying the Schrodinger equation to this state yields
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a set of coupled differential equations

et Zc u(®)) L i) | (a20)

dt
= Mg (u(t ))Ck( )-

Now, a few assumptions will be made, the first be-
ing that the ground and first excited states are non-
degenerate. This could in general be satisfied by going
into a symmetric subspace and looking at the relevant
probability amplitudes within that symmetric subspace
(for instance with the transverse field Ising model, we
will consider the subspace defined by the usual Ising ro-
tational symmetry). The second and more relevant as-
sumption is that |Cy| > |Cyi| > |C2| > ... which is just
a statement that we are in the near-adiabatic limit of
evolution. For our purposes, we will assume that the am-
plitudes for the second excited state and above are small
enough throughout the evolution to be negligible. Fur-
thermore, we will later consider |C| to be a small quan-
tity relative to |Cp| for approximation purposes. The last
requirement is that we set Ag(t) = 0 which can be done
without loss of generality.

Applying these assumptions and following the calcula-
tions of @], we derive the equations:

dCo(t) _ (u(®))u(t)
TR N O ) (A21)
dCi(t) _ y(u(t))u(t) :
where the new functions represent
7(u) = (po()] (B = C) 1 () (A23)
Au) = A1 (u) — Ao(u) (A24)

This leaves us with two coupled, complex differential
equations. To make things more explicit, we now split the
C variables into real amplitudes and phases such that

Co(t) = e ® Ay (1),

Ci(t) = e A, (1).
These can be inserted into the differential equations. Af-
ter some algebra, including separating out real and imagi-

nary components, the differential equations reduce to the
real equations

AF - Al

PR T4 AW (425)
Ay = —% cos(¢p) A, (A26)
A = % cos(¢) Ao, (A27)
where ¢(t) = po(t) — ¢1(t)



The A equations can be integrated to give

¢ .
Ag(t) = acos </ at' L cos(p) + 19> ,
0 A

t .
Aq(t) = asin (/ ar' cos(p) + 19) .
0 A

(A28)
(A29)

These equations are similar to what was seen in the main
text, and once again we are left with the conclusion that
at the end of the evolution, we want

Ofu(t)] = /0 ' dt% cos(p) (A30)

to be close to a multiple of 7. Though, we again have
the caveat that having O[u(t)] equal to any multiple of
7 other than zero would violate the assumptions of near-
adiabaticity.

3. Optimal Control

Our setup is to take a procedure that goes from time
0 to time ¢; moving from u(0) = wu; at the beginning
to u(ty) = ue at the end. We want to ensure that the
instantaneous eigenstate populations are maintained dur-
ing that evolution, at least from the beginning to the end
(but not necessarily in the middle), so we want to mini-
mize
J = |Cy(tr)Colty) — C5(0)Co(0)] (A31)
GO (ty) - CHO)CL ()]

The actual form of whether we are looking at the L' or L2
norm of the difference between the probabilities is largely
irrelevant, and another choice could be made with little
consequence. We have also written out the probabilities
explicitly as |C|?> = C*C which will be helpful shortly.

Now, we will treat this as an optimal control problem,
seeking to find the conditions on u(t) such that .J is mini-
mized. In order to enforce Eqs.[A21] & [A22] we introduce
Lagrange Multipliers Dy (t) and D1 (¢) so that

J = |Cy(tr)Colty) — C5(0)Co(0)]
G (t5)Cilty) = CT(0)CL(0)]

+ /O Y [Do(t) (C‘O(t) + %q@))

+ Dy(t) (01 (t) - Ma)(o N <t>) }

(A32)

+ c.c.

where the final c.c. indicates that we need to complex
conjugates of the third and forth lines, just to treat the
variables and their complex conjugates equally (remem-
ber that u(t) is purely real).

Now, we just perform a Calculus of Variations analysis
of this using Cy(t), C1(t), C§(t), Cy(t), and u(t) as the
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variational parameters. In doing this procedure, it is
important to remember that the C' variables are fixed at
t = 0 but not at ¢y and that u(t) is fixed at both end
points.

Note that under a full optimal control theory analysis,
such as [15], there would be restrictions on w(t) such as
u(t) € [0, 1]. In this setting, we will ignore this restriction
for ease of analysis, and this ignoring is justified by the
fact that we are interested specifically at how this system
behaves in an annealing region. We are using this analy-
sis explicitly to look at the annealing rather than bang-
bang portions of the control function, and any of our
results here should be taken explicitly within that con-
text. Also note that any restrictions on the C' variables is
already taken care of by the fact that Eqs.[A21] & are
being enforced by the Lagrange multipliers. These equa-
tions came from the Schrodinger equation, so the Cs will
obey all necessary properties of probability amplitudes.

The resulting end point equations yield the boundary
conditions for the D variables

Do(ty) = —sgn(|Co(ts)* = [Co(0

*)C (ts),
Di(ty) = —sgn(|C1(ts)]* = [C1(0 :

)1 (ts)

Any changes to using the L' or L? norm originally would
have shown up here and would have just resulted in
slightly different boundary conditions.

The variational procedure for the D Lagrange multi-
pliers just results in Eqs. [A21] & again as expected,
and the variational procedure for the C variables results
in

)|
)l

@)

Dot) = — L5y i) (A33)
7 (u(t))u(t) .

Du(t) = TRy Dolt) — iA@E)D(e). (A34)

These are essentially following their own Schrédinger evo-
lution. Also note that based on the boundary conditions
for the Ds, we have D1 (t) roughly the same size as C (t)
and Dy(t) roughly the same size as Cy(t). Hence we can
use the same hierarchy of Cy > C7 with these new vari-
ables.

The last equation, resulting from the variations of w(t)
is the one that is actually important here. Assuming the
gap is nonzero, the resulting condition can be written as
(suppressing functional dependencies for space reasons)

¥ (D()C’l —+ D()Cl — CoDl — CoDl) = iClDlAA/,
(A35)

where A’ = %é(t). The natural next step is to use

Eqgs. [A21] [A22] & [A34 to eliminate the time deriva-
tives of the C' and D variables:

(C1(t)Do(t) + Do(t)C1(t)) v(u(t))
= — Ci(t)D1(t) A" (u(t)),

(A36)



This gives us the full set of optimal control equations
that are necessary for an optimal procedure. Unfortu-
nately, this formalism does not lend itself to the pertur-
bative analysis discussed in the previous sections. These
results are presented for completeness.

Appendix B: Trotterization Error

In this appendix we examine product formula errors
and how they interact with the oscillations observed in
the optimal curve.

In Sections [B1] and [B2] we derive directly how these
oscillations influence the product formula. Section[B1lfo-
cuses on the standard product formula error formulated
in terms of operators while Section [B2] follows the ar-
guments of Ref. [40] and examines the product formula
error for an adiabatic evolution. In section [B1lwe derive
Eq. (33) from the main text.

The last two sections provide additional background
for Section [B] with Section [B3] rederiving the basic
known formulas necessary to bound the Product For-
mula errors. Section [B4] looks at the robustness of our
oscillatory enhancement to perturbations of the product
formula parameters.

1. Standard Operator Error Scaling

In this section, our goal will be to find the bound on
the matrix norm error between unitaries given in Egs.
& Bl under the assumption that the evolution is gov-
erned by the oscillatory function given in Eq.

This sequence of arguments will initially follow the ap-
;ﬂﬁndix of ﬂﬁ] For another good reference on this, try

].

Finding the error between these two unitaries is fairly
straightforward and is laid out well in Ref. ﬂﬁ] We red-
erive this result in Appendix To cite the result

10t 0) - UPF(tf,())II (B1)
P—1 (k+1)At
0 7 kAt kAt

The matrix norm used in this proof was the standard
operator norm. Also, notably, this result does not rely on
perturbative methods like the Baker-Campbell-Hausdorff
equation or the Magnus expansion.

Now, it is fairly straightforward to specify down to the
form we are using in which case

1U(t5,0) = Upr(ty, 0)|] (B2)
R i (2R DV s
< H [B,C} kZ_O/IcAt ds /kAt dru(r)(1 —u(s)).

Next, the form in Eq. (B2) is a little unruly to work
with. It actually is much easier to go over to Fourier
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space where

u(t) = [ h de (€)™, (B3)

Of course if we take the Fourier transform of Eq. (28],
we would get

(&) = @ 0 (ivg 1N s (e L
) = ao(e) + 52 (20 (6+ 1)~ (6= 1)),
(B4)
Putting this Fourier transformed version in allows us to

easily do the integrals over s and r, resulting in

|U(t,0) — Upp(tys, 0)]]

< H[B,O]sz_o/z de [~ anale) 6 - atn)

(B5)

2T Atn e2i7rAtk(n+f)
) )9

(e2i7rAtn (1 _ e2i7rAt£) n— (1 —e
4m2né(n +§)

Notice that all the k& dependence is in the last line, so we
can carry out the k sum fully to get

1U(ts,0) = Upr(ty,0) (B6)
< H B C H/ d§/ dna(§) (5(n) — u(n))
( 1+ eQWAtg + € 217rAtn)) (1 2mAtp(77+€))

X

47-‘-2775(77 + é‘) ( 2im At _ e—QZTrAtn)

From this point, putting in Eq. (B4) and simplifying
down is quite possible; although, the fully general expres-
sion is a bit messy and not horribly informative. One pos-
sible simplification that is quite informative is the case
where 7 — At in which case manipulation can simplify
all of this nicely down to

||U tfa UPF tfa

<H B C’ H/ df/ dntio(§) (6(n) — to(n))

( 1+ e2z7rAt£ + & ( szAtn)) (1 _ e2i7rAtp(77+§))
47T27]§(7]+§)( 2imAtE _ o 2i7rAtn>
At?p cos(o)
co————=.
27

(B7)

-||[3.€]

If we undo the Fourier transform, this further reduces to

1U(t£,0) = Upr(ts,0)l| (B8)
<l [ o s

(I ] 5

In other words, the sine function we added onto the con-
trol function essentially becomes decoupled from the rest



of the error in the case that its period is the same as the
Trotter slice size. Furthermore, the first line of the error
bound will always be positive (remember that ug € [0, 1]),
but the second line can be negative, effectively reducing
the error in the Trotterization. As promised, choosing
¢ = 0 results in the maximum improvement.

The improvement in the error is proportional to At?p
which is coincidentally the same rough scaling as the term
above, so this term will actually be competitive and could
contribute greatly to the error bound. To see this more
precisely, note that the first term in the bound can be
upper bounded quite easily by %AtQp so that

10(t7,0) ~ Opr(iy, 0l (59)
< |[2.€][| 552 (1 Leose).

Note that ¢y < 0.5 at the very worst to ensure that u(t) €
[0, 1], so it is not possible for this bound to be below zero.

In Appendix[B4]we explore the robustness of this effect
to perturbations.

2. Adiabatic Trotter Error

In this subsection our goal will be to bound the Trotter
error by looking at the error on the ground state fidelity
directly. It should be noted that our analysis indicates
that the underlying annealing curve adiabatically trans-
fers not just the ground state but also higher excited
states, with this reducing down to just ground state adi-
abaticity in the limit of ¢y — oo. The results in this
section focus on just the ground state, but similar results
can be derived for any excited states, and those results
can be simultaneously applicable.

The methods in this section closely follow the results
of Yi and Crosson @] who themselves draw inspiration
from [6] and [41]. Specifically, this result can be thought
of as a modification of their Proposition 1 (proven in
their Appendix F) to the setting where the underlying
annealing curve has an oscillatory structure. In practice,
this modification is exactly the same as the modification
to the usual Trotter operator error formula, meaning we
can recover the oscillatory enhancement and still have
the improved scaling analysis of Yi and Crosson.

As a reminder, the control function is

u(t) = uo(t/ty) + c(t, ty), (B10)

where ug(s) is a smooth monotonically decreasing func-
tion, and

c(t,t7) = —colts)sin (277% 4 ¢) . (B

We discretize our adiabatic evolution over time ¢y into
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M steps with “short” timestep At = t;/M:

Uy (t+ At,t)
t+At R K
=exp (—z/t dt’(u(t)B + (1 — u(t'))C)) . (B12)

We want to evaluate the integral

(B13)

For our purposes, we will assume that ug(t/ty) is ap-
proximately constant over this interval, which is valid for
large t;. In other words, we assumed here that u'o(%) is

approximately constant over this small interval. We will

also now introduce s = = as a normalized time. In this

=i
case

t+AtL
/ dt'u(t")
t

= Atug(s) + CO%(COS(QTW@ + At) + ¢) — 005(2771-15 + ).

(B14)

We can use trig identities to reduce this further to

t+AL
/ dt'u(t") = Atug(s) (B15)
t
T . wAt, . 2w At
_ C(); SIH(T) Sln(?(t + 7) =+ ¢)

We will now define 0 = 7/t; and As = At/ty so that

t+At
/ dt'u(t') = AtU(s). (B16)

where for convenience, we have defined

o . TAs\ . 27 As
Aor sm( . )sm (7(s+7)+¢) .
(B17)

In the limit of As — 0, this just reduces to U(s) — u(s).

To recover the original results of [40], take ug = 1 — s
for a linear ramp and ¢y = 0 for no oscillations. This is
part of the discretization error that we will later assume
is smaller than the adiabatic error.

It is also important to note that ¢y < u((s) (specifi-
cally elsewhere we found that ¢y € O(43)). This means
that the sinusoids can be counted as a correction to the
ug(s) terms rather than their own term. This will be
useful when bounding quantities since we can then treat
these two as a whole rather than seperate quantities to
bound

Each such discrete unitary is then Trotterized to first
order:

Uy (t+ At t) =exp (—iAtU(s)B) (B18)

X exp (4At(1 _ U(s))é) :



we define the effective Hamiltonian for this Trotterized
evolution by

A(t) = ilog (Ufl (t+ At, t)) /AL, (B19)
In the limit of the discretization step size At — 0, there is
a continuous Hamiltonian defined by this. This effective
Hamiltonian has the nice property that H(0) = B and
H(ts) = C, so evolution under H(t) for slow t; can be
described as an adiabatic process. The optimal curves
approach an adiabatic procedure with vanishing initial
and final bangs in the large ¢y limit, so this is appropriate
in our setting for large ¢ (corresponding to large p for
QAOA).

The core idea of this method then is to bound the er-
ror on the evolution, not using operator errors but using
the adiabatic theorem directly. This will result in tighter
scaling in terms of the number of Trotter or QAOA slices
p but will introduce scaling with the p-independent spec-
tral gap of H(t). This technique will use the adiabatic
theorem of Jansen, Ruskai, and Seiler [d].

We split the effective Hamiltonian into two parts such
that

e*iAtH(s) —

(eﬂmU(s)Beth(s)é) oAl (B20)

— o IAG(U(5)) p—iltC (B21)
To reiterate our ultimate goal, we would want to show
that there is an enhancement when At = 7. As we will
see, this goal is not consistent with the assumptions of
this method, which we will discuss later in this section.
In order to utilize the Adiabatic condition bounds of
ﬂa], it is necessary to compute the matrix norms of deriva-
tives of H(s) with respect to s. Using Magnus expansion
techniques, @] bounds the norms of these derivatives by

d - d - . N
_ <|| =
I 1| Il 5= GIl Fi@AHIC] + 288G, (B22)
a? - d? 4 A A
5 Hl <55 GIl FuALIC] + 288Gl (B23)
d - N N
+ 2At||%G||2 Fo(2At|C|| + 2A¢|G]).

Here the F functions are defined to be

Fo(z) =) al = - i p (B24)
j=0

Fi@ =3 5”: — _ln(1 —2)/z, (B25)

Fo(z) = 22;”—; =— /O dz'In(1 — '), (B26)

We present both norm derivatives here, but since our
results only effect the constant prefactors and not overall
scaling, it will be enough to keep track of ||%H || because
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our results do not alter the dominant term in Ref. HE]
which depends on ||%I~{||

The next step in this process is to bound the norms of
the derivatives of G. This is possible by looking at

die—iAtG(U(s)) _ E(S,At)e—iAtG(U(s)),
S

(B27)
where
- AU AU BB Ay At U(s)C
E(s,At) = ZAtE e (B—C)e . (B28)

The ‘Zl—g is the only new portion of our results compared
to Ref. @], and to recover their results exactly, we would
need to set ‘Z—U — 1. In our setting, this derivative is just

(fl_g = up(s) — 2A—c;)cos <%T7T(s+ %) +¢) sin <W§S> )

(B29)

Again in the limit of small As, this reduces to just
d d 2
v du_ cos (7”5 + ¢> . (B30)

E — E = UO(S) —

A nice feature of Eq. is that it has an exact solu-
tion in the form of the Magnus Expansion. The terms
in the Magnus expansion can then be bounded as in
Ref. m], and we follow a similar bounding but now keep-
ing track of ‘fl—lsj. For instance, we can work out that the

2mcy

first two derivatives of G can have their norms bounded
by

|G| < U(s)D_ + QLNB (2AtD_U(s)), (B31)

[|G'|| <U'(s)D_ + AtDU(s)U'(s)Fy (2AtD_Ul(s)).

(B32)

Here we define D_ = ||B — C||, Dy = ||C||, and D; =

I [B, C'} [|. Now, we can finally get back to the bound
on ||H'|| from Eq. B2

1H'|| < |IG"|] F1L(2AL|C|| + 2A¢]|C)) (B33)

< [U'(s)D_ + AtD U (s)U’(5)F1 (2AtD_U (s))]
x Fy (2AtDg + 2AtU (s) D + Fa (2AtD_U(s))).

These functions can be bounded if their arguments are
x<1/2

.71(1')

IN

1+, (B34)
£C2

Fo(z) < —(1+x). (B35)

2
This allows us to bound

[[H'|| < [U'(s)D— 4+ AtD1U(s)U'(s) (1 + 2AtD_U(s))]
x |1+ 2AtDg + 2AtU (s)D—

N (2AtD_U(s))?

> (1+2AtD_U(s))

(B36)



We make the same assumption as Yi and Crosson that
Dy, D_ € O(n), D1 € O(n?). The other essential as-
sumption here is that At € O(n~!) in order to make the
arguments of the F functions small. Unfortunately, this
assumption is extremely hard to justify in our QAOA
setting since we observe that At ~ 7. As discussed else-
where in this paper, 7 is inversely proportional to the
spectral gap of the problem, and the spectral gap of-
ten scales as an inverse polynomial or exponential in the
number of qubits during phase transitions. At the mo-
ment, we will still assume that At € O(n~!), but this
is the point in the argument where this method breaks
down in our setting.

For now, we continue the argument under the asusmp-
tion that At € O(n~!) in order to complete the analysis.
With these assumptions, the second term is proportional
to O(1) and so we drop it. On the other hand, these
assumptions mean that the first term is O(n).

With these assumptions, 2AtD_U(s) < 1/2 and so

~ 3

[|H'|| < |U'(s)D_ + §AtD1U(s)U’(s) (B37)
Finally,

€tro <€adp T €rot (B38)
<€adb + €tot (B39)
:O(etot) (B40)
G(ty, H)) (B41)
(B42)

2
3HH’ H)
+ 0O

ﬁf)\3 >

((AtDlU(s)U’(S))2> (B43)

of;
o
(282

tf)\?’
A (U tyDIU(s)*U’(s)?
=0 ST ) (9( DN ), (B44)
where
o 1 (IH O], 1 )]
G(ty, H) tf( 5\(0)2 + 5\(1)2 ) (B45)

1 1 H” H' 2
P L[ (UL MR,
tr Jo A(s)? A(s)?
which comes from Ref. ﬂa] and encapsulates the adiabatic

condition. In the above Eq. (B39) we used

(B46)
(B4T)

— |
Edisc =|€aqh, — €adb| <K €adb,

~ 1
€disc :|6tot - €t0t| < Etot-

€l 41, 1s the error from a finite time implementation of
an adiabatic process, €,qp, plus discretization error, €gjsc.
€tor is the error from a finite time implementation of an
adiabatic process plus discretization error plus Trotter
erTor. €0t 1S the error in doing the discrete and Trot-
terized evolution adiabatically. €gisc is the error in dis-
cretizing and Trotterizing the adiabatic discretized and
Trotterized process.
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The dominant term in Eq. (B44) is the second term,
and for our purposes, we are interested in how the
U (s)2U’(s)? portion effects this as opposed to just taking
U(s) — 1 — s. We specifically want to look at the maxi-
mum value of this expression as a function of s. For the
original result where U(s) = 1 — s, the maximum value
of U(s)2U’(s)? is just one at s = 0.

In this setting, the enhancement from meshing up with
the period of oscillations is ironically not an enhancement
so much as a lack of detriment from the oscillations. It
is easy to see that if As = o, then U(s) = wuo(s) and
therefore U(s)2U’(s)? = wuo(s )2 6(s)?, so matching up
with the oscillations just makes us to recover the error
that would have existed without the oscillations. On the
other hand, not matching up with the oscillations can
lead to severe detriments to the error term.

If we choose ¢ = f% such that the argument of
the oscillations is zero at s = 0 and then choose the
linear ramp ug(s) = 1 — s, we can look at the value of
this function at s = 0. For the linear ramp without the
oscillation, s = 0 is the maximum value of this function,
so it will be demonstrative:

7TAS 2
)

For any As < o, the result in a quantity > 1 and lead to
a worsening of the bound. Even for As > o, there are re-
gions of the curve other than s = 0 that are detrimentally
effected by the oscillations.

For a function other than the linear ramp, the maxi-
mum of this quantity could occur somewhere else in s.
The only way to ensure that the oscillations will not be
deleterious to the Trotterization is to have As = o.

Unfortunately, as stated already, having As = o vio-
lates the assumption that At € O(n~!). It is possible
that QAOA angles will start scaling with n differently as
we scale up these algorithms, but there is currently no
numeric or experimental evidence of this type of scaling.

27Tc0

U(0)2U'(0)* — (1 + (B48)

3. Trotterization Error

Let F(tk,tk_l) = Ul(l)(ﬁk,ﬁk_l)U+(tk,ﬁk_1).

or Ut w3t

- B4
Oty Oty - Oty (B49)

U
oty

(B50)

B(ty) exp._ ( / B(s >exp_ <z /t:klA(s)ds>

+iexp_ ( t B(s)ds )A(tk)exp_ <z/t ) A(s)ds) .
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a@% = —i(A(t) + B(tr)Uy. (B51)
k

exp_ (z/t ) A(s)ds) (B52)

=i |exp_ |1 ) (B53)
th—1

—iexp_ (z/t ) B(s)ds) lexp_ <z/t ' A(s)ds) ,M—i—B(tk)
—i [exp (z ) B(s)ds) ,M—i—% exp_ <z/t ' A(s)ds) U

th—1

—iexp_ (z /tt B(s)ds) /tt duexp_ <z /tu A(s)ds) [B(ty), i A(u)] exp,, <z /tu A(s)ds> vPuMu,

(B54)

e ( /:1 B(s>ds) /:1 dwexp. ( [ A(s>ds) . B, (i [ Awas) )
X exp (z /t:kl A(s)ds) exp, (z /t:k B(s)ds) F

—exp. (Z /t:le(s)ds> /t:klduexp_ (z /tu A(s)ds) [A(u), B(te)] exp., (z /t:IA(s)ds> (B56)
X exp, (_l/: B(s)ds) F

U,

where we used the identity 4. Product Formula Perturbations

1 One important question is whether Aty = 75 is a true

[e?, B] = 7/ dse(l_s)A[B, Ales4, (B57) minimum or just an enhancement. In other words, is it

0 beneficial to wiggle slightly away from this. Furthermore,

if it is a true minimum, how much can we wiggle away

Integrating the last equation and using F (ty_1,tx_1) =  before messing up the fact that we are in a minimum

1 yields F(ty, tr_1) = [* C(v,tx_1)F(v,t5_1)dv which ~ Well
o (ts to-1) ftk* (0, te—1) (v, B )dv whi The results in Section [V look only at the case where

produces the product formula step size At; matches up with the
periods of the oscillations 7,. What happens if we con-
UL (s tr—1) — UJ(FI)(t,€7 tr_1)|l (B58) sider small perturbations such that
t
S/ do||C (v, tg—1)| (B59) Aty =T, + €, (B61)
tr—1

th v for a small e.
§/ dv/ dul|[A(u), B(v)]]|- (B60) For the purpose of this section, we break the error,
te-1 te—1 [|U(0,Atr) — Upr(0, Atg)||, up into three portions. The



first is just the base error due to ug alone without the su-
perposed oscillations. This section will not consider this
portion of the error because we are only concerned with
the enhancement due to the oscillations. The second por-
tion is the cross terms between wug(t) and the oscillations,
which we write as Ecp. In the main portion of the paper,
we found that Ecp = 0. The last portion, due to just the
behavior of the oscillatory portions, is Egs which is what
is responsible for the enhancement we see in the actual
results.

Luckily, for both the single oscillation and the aggre-
gate case, simple algebra shows that the cross term error,
Ecr, cancel out at the first order in € as well. Therefore,
those terms are consistent with being in an extremum.
For the single oscillation case, the error due to the € shift
is (setting ¢ = 0)

icke? (1 — e2 ™Ak Gg(N)
2Ty,

EC) = ||[B.C +O(E.

(B62)
Here ¢y, refers to the amplitude of the oscillations during
the kth time step, and 7 is the period of the oscillations
during the kth time step.

When we look at the error in the cross terms for the
entire procedure over multiple oscillations, each with am-
plitude ¢o and period 7, it becomes

icoe?io(t)
‘/ d)\(2)\7' — e2miAT)

> (62i7r)\7 + (2]? . 1)621'71'/\(;0—}-1)7' - (2]? + 1)621'71'/\;07 + 1))

IECT_H é

(B63)

+O(e%).

When we consider the case of a single oscillation, the
correction from the oscillation, Epg, has no term that is
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linear in €, meaning that Aty = 7% is an exact minimum.
To be exact this term comes out to be (again setting

¢=0)

2 3Tk

E(Olg S H |:B,CA’:| ‘ ( Ck'T]? 7TCk€3

+0 (") > (B64)

This result is mildly problematic because it means that
this enhancement is not a minimum here but a higher
order critical point. This problem gets fixed when we
consider more oscillations and is a result just of the fact
that we are considering a single oscillation here.

To understand how to fix this, we go instead to the
aggregate case in the main text where all the oscillations
are considered together (under the approximation that
the frequency of the oscillations is constant). There, the
expansion results in

‘ copT?
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1
+ GTeop (2p2 —3p+1) 62) +O(e).

Eos = H [B, O] (B65)

Note that this is all before coherence or any additional
optimization arguments have been made.
Appendix C: Details of Numerics

In many of the figures in the main text, we use a spe-
cific Ising model. This Ising model was chosen to have
all-to-all couplings with each coupling strength chosen
uniformly at random from the range [—1,1]. Other sim-
ulations were run in the creation of this paper, and the
results were always qualitatively the same. For complete-
ness here we provide the J;; matrix elements used to gen-
erate Figures & [ rounded to three decimal points:

0 0.526  0.852 0.832 0.718 —0.084 0.702 0.609 |
0.526 0 0.129 —-0.951 0.432 0.250 0.490 0.402
0.852 0.129 0 0.243 0.708 —0.648 0.753 —0.743
0.832 —0.951 0.243 0 —0.320 0.000 0.910 —-0.002
Jij = (C1)
0.718 0.432 0.708 —0.320 0 0.346 —0.801 —0.476
—0.084 0.250 —0.648 0.000 0.346 0 0.149 —0.278
0.702 0.490 0.753 0.910 —0.801 0.149 0 0.509
| 0.609 0.402 -0.743 —0.002 —-0.476 —0.278 0.509 0




